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Executive Summary 

AGRICORE is a research project funded by the European Commission under the RUR-04-2018 
call, part of the H2020 programme, which proposes an innovative way to apply agent-based modelling 
to improve the capacity of policymakers to evaluate the impact of agricultural-related 
measurements under and outside the framework of the Common Agricultural Policy (CAP). As the 
conclusion of T3.2. - AI-based farmer’s behavioural foundation, deliverable 3.2. aims to present the 
mechanisms by which the agents (agricultural holdings) of the AGRICORE ABM make their decisions, 
both at the long-term structural level and at the short-term agronomic level. To this end, it presents the 
mathematical tools that make it possible to artificially reproduce the intelligence of the decision-makers 
(i.e. the human beings who act as managers of the various holdings). Firstly, in order to ease the 
understanding of the lector, there is explained how the model predictive control approach works, the 
foundation of the agent's optimisation process. Further on, within the deliverable, there is also detail on 
how the agents manage risk and uncertainties based on risk aversion and innovativeness indexes. For 
last, the decision-making must be constrained due to several factors, such as intrinsic, physics or 
external limitations. 
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Abbreviations 

Abbreviation Full name 

MPC Model predictive control 

RHC Receding horizon control 

ABM Agent-based model 

CR Current ratio 

LR Liquidity Ratio 

D2E Debt-to-Equity 

GFI Gross Farm Income 

FNI Farm Net Income 

PMP Positive Mathematical Programming 

ST Short-term 

LT Long-term 
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1 Introduction 

The AGRICORE project aims to provide European, national and regional administrations in charge 
of the design and implementation of agricultural public policies with a versatile tool to carry out 
impact assessments on actual finalised policy programmes (ex-post analysis) but also forecasted 
impact assessments of different alternative policy programmes (ex-ante analysis). These 
programmes are generally made up of combinations of instruments belonging to pillars I and II 
of the CAP. In the RUR-04-2018 call under which AGRICORE was granted, the European 
Commission wanted to improve some features with respect to existing impact assessment 
models, namely: 

• Heterogeneity: models based on computable general equilibrium (CGE) or partial equilibrium 
(PE) work at an aggregated level (e.g. by sectors corresponding to all farms with the same 
type of farming throughout each country). Based on the results obtained with these models, 
it is very difficult to disaggregate (by downscaling) to calculate the different impacts on farms 
with the same techno-economic orientation but with different sizes or located in different 
geographical contexts [REF needed]. The commonly used alternative is to generate a series of 
typology farms, but this solution is still unable to capture the large impact variability of the 
same policy programme on a completely heterogeneous population of agricultural holdings 
(from small family farms to large industrially oriented holdings). 

• Structural changes: sectoral models compute growth and aggregate variations at the regional 
or national level but again have problems in translating these aggregate results [REF needed] 
into variations in the number of active farms, average farm size, resulting labour demand or 
redistribution of average income. 

• Financial viability: with aggregated models, the results are sectoral averages. This can lead to 
wrong conclusions. For example, a given policy may greatly increase the profitability of a 
small group of large farms while reducing the profitability of most small farms. In aggregate 
terms, the policy may appear beneficial to the sector when in fact, it is detrimental to the 
majority of its constituents. 

• Risk and uncertainty: the best way to model uncertainties and the different perceptions of the 
risk associated with these uncertainties remains an open debate among the bio-economic 
modelling community [REF needed]. 

• Inter-farm interactions: it is not straightforward for sectoral models to model the interaction 
processes by which farms compete (for limited resources such as land) or cooperate 
(diffusion of more efficient technologies). 

Agent-based models (ABMs) have inherent features that allow them to address these needs in a 
more transparent and understandable way, at the cost of an increase in the complexity of the 
formulation and the computational power required to solve them [REFs needed]. Obviously, 
AGRICORE is not the first ABM dedicated to this issue; there is already a long tradition of models 
using the same approach [REFs]. However, AGRICORE aims to offer significant advances in terms 
of the heterogeneity of its agents (initialised using synthetic reconstruction techniques to 
emulate the full population of real farms) and also in terms of its dynamic analysis capabilities 
(which will allow analysing not only the stationary effects of long-term policies but also their 
transitory effects during the process of adoption by farms). 

The minimum unit of an ABM is the agent. An agent is a software element (a persistent piece of 
code) that has a set of states that represent characteristics of the real entity represented by the 
agent that is of interest to the modeller. The agent also has a set of methods defined to emulate 
its actions and how they are taken, either proactively or in response to an external stimulus 
(either from the environment or from other agents). The agent's behaviour is computed inside 
the corresponding method using a set of rules describing how states are translated to actions or 
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new states. These rules can be static or dynamic (in case agents are prone to learning). The 
observable result of an agent's behaviour is its actions and the actual activities that it performs 
based on the application of decision rules on its states. There are several types of decision 
rules [DAM]: 

• Programming-based approach 

• Learning-based approach 

• Model-based approach 

• Rule-based 

• Multi-criteria decision-making 

• Inference engines 

• Evolutionary computing 

• Machine learning 

• Markov Decision Processes 

 

As part of task 3.2 results, the objective of this deliverable is to present how the rationale of a 
farmer is modelled in a mathematical optimisation problem. Generally, it can be assumed that the 
farmers act towards maximising their profits while taking some risks, the latter being the key to 
defining their overall trend and behaviour. In this sense, the first step is to define the main 
objective of the farmers mathematically as an optimisation problem so that it can be solved by 
means of solvers. This will settle the core of the agent's rationale, which, as presented in the 
following sections, has been divided into two parts based on the time framework. Further on, the 
second step is to shape the core through a parameterisation based on variables that define the 
agent's behaviour, such as risk aversion.  For last, it is important to clarify from the beginning the 
use of the "optimisation" term. In mathematics or control theory, the term "optimisation" refers 
to finding the best set of actions (or control variables) in order to achieve the best solution or 
reach the objective in the most efficient way. However, in the problem handled within AGRICORE, 
the objective is not to find the best solution available but to find the best solution according to the 
agent's criteria and, most importantly, based on the information available to the agent. 
Consequently, in order to achieve this objective, AGRICORE proposes and model predictive 
control (MPC) approach.  
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2 Determination of agents' behaviour 

The agent's behaviour aims to replicate the agricultural owner's mind concerning financial and 
agroeconomical decision-making strategies. Given its complexity, the agent's behaviour has been 
divided into two interconnected models. The first focuses on long-term optimisation and the 
second one, constrained by the first, focuses on the short-term. On the one hand, long-term 
optimisation traduces in financial optimisation of the agricultural holding. Moreover, the strategy 
reached through the optimisation based on the agent's behavioural parameters settles economic 
restrictions for the short-term problem. On the other hand, the short-term optimisation at the 
sight of one year focuses on the agroeconomical strategies for the next agricultural campaign. 
Both models, as presented in D3.1, are executed sequentially and iteratively.  The following 
sections are detailed both model's mathematical formulation and the optimisation of problem 
resolution based on the agent's behaviour.  

2.1 Long-term model - Financial-based planning of the agricultural 
holding structure 

2.1.1 Model Predictive Control 

Predictive Control is a particular strategy in the field of Advanced Control based on the calculation 
of future actions required to optimize a controlled target. This strategy needs the dynamic model 
of a plant, known as the predictive model, in order to predict its future behaviour during a time 
interval, the horizon of prediction. The time interval is assumed to be finite in order to avoid the 
propagation of errors due to modelling activities. Once applied, the optimum action of control is 
recalculated, and the predictive horizon is moved in order to adjust the settings to the new initial 
conditions. This is known as a sliding horizon [1]. In the model, instead of having a sliding horizon, 
the horizon will be reset after each optimization, as the predictive horizon refers to the years 
remaining until the agent’s retirement. Below, Figure 1 graphically presents the MPC control 
scheme used in AGRICORE. 

 

Figure 1 MPC Control Scheme used in AGRICORE to mimic farm agent role 
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The main aspects related to MPC are listed below and represented graphically in Figure 2 (taken 
from [2]): 

• Predictive model: It is a model of the plant/system to be managed that is used to predict the 
dynamic response based on the action applied during the optimization process. 

• Predictive horizon: Discrete or continuous time interval during which the operation of the 
plant/system is predicted by using the predictive model (or a simplified one). 

• Control horizon: Discrete or continuous time interval, during which the sequence of optimal 
actions is chosen by means of an optimization problem. It must be less than or equal to the 
prediction horizon. In the event that it is lower, it is assumed that the rest of the actions are 
equal to the last one calculated. 

• Restrictions of the model: A set of restrictions due to saturation of the actuators or 
dangerous operating conditions of the plant that must be taken into account when designing 
the optimal control strategy. 



 

Determination of agents' behaviour – 10 

AGRICORE – D3.2 AI-based farmer's behavioural foundation 

 

Figure 2 Functionality of the Receding Horizon Control principle of the MPC. 

 

Basically, MPC relies on three main ideas: 

1. Explicit use of a model to predict (predictive model) the output of the process (also referred 
to as the output of the system or the output of the plant) along a future time horizon. 

2. Calculation of an optimal control sequence (also referred to as input sequence) based on the 
optimization of a performance index (also referred to as fitness function, objective function, 
or optimization function), subject to a set of constraints. 

3. A receding horizon control (RHC) strategy, so that at each instant, the horizon is moved 
towards the future, which involves the application of the first control signal of the sequence 
calculated at each step. At the next time step, the actual plant states are read (if they’re 
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directly observable) or estimated (if they’re not) and the optimal sequence of inputs is 
recomputed. 

Among MPC advantages, the following can be mentioned: 

• It handles multivariable control problems naturally. 

• It explicitly handles constraints, allowing a closer operation to them. 

• It handles structural changes (by modifying the model and/or switching between different 
branches of the objective function). 

• It is an easy-to-tune method through well-understood tuning parameters (prediction horizon 
and optimization problem setup). 

Depending on the choice of the type of model, the objective function type and the mathematical 
description of constraints, MPC gets different "surnames" (i.e. adjectives that specify the previous 
three aspects). For example, the control of AGRICORE agents’ operation is intended to 
become a State-Space based (defines the type of model) Non-linear (defines the form of the 
objective function) MPC with non-linear constraints/model (defines the math form of 
constraints/model). 
In AGRICORE, the ’plant’ is the agricultural holding instead, and the model is the set of equations 
that define the dynamics of the farm (shown in Section 3). It is important here to distinguish 
between the agent's domain model and the agent's optimisation model. All the elements of the 
optimization model must be included in the domain model, but not all the elements (attributes) 
of the domain model are taken into consideration for the optimization model (e.g. the age of the 
farmer does not explicitly appears in the optimization at a particular step, but might change the 
optimization parameters between two optimization instants). The next step is the definition of 
the second one. As mentioned before, AGRICORE is a state-space (SS) based model, which means 
that the prediction model of the farm will have the following formulation in its most generic 
version: 

 

 

𝐱[𝑘 + 1] = 𝐀[𝑘] ⋅ 𝐱[𝑘] + 𝐁[𝑘] ⋅ 𝐮[𝑘] + 𝐄[𝑘] ⋅ 𝐝[𝑘]
𝐲[𝑘] = 𝐂[𝑘] ⋅ 𝐱[𝑘] + 𝐃[𝑘] ⋅ 𝐮[𝑘] + 𝐅[𝑘] ⋅ 𝐝[𝑘]

 (1) 

 

where: 

• States 

(𝐱[𝑘] ∈ ℝ𝑁, 𝑁 ∈ ℕ): are dependent variables mimicking those attributes of the farm whose 
value depends on the previous states and on the decisions taken in the prior instant of time. 

• Decisions (Inputs)  

(𝐮[𝑘] ∈ ℝ𝑀, 𝑀 ∈ ℕ), also referred to as manipulated variables or agro-management controls. 
They are independent variables that mimic the set of agro-management and financial 
decisions that a farmer (manager) has to take each season to optimize the holding operation. 
This includes either purely agricultural decisions (amount of fertilizer used, irrigation plan), 
or purely financial decisions (new investments). The idea is to first take financial decisions 
and then make agronomical ones depending on the prior. An example of this is that financial 
decisions limit land availability, which serves as input in the agronomical module. Finally, the 
allocation of crops can be optimised. 

• Outputs  

(𝐲[𝑘] ∈ ℝ𝐿, 𝐿 ∈ ℕ): are the dependent variables to be controlled. 
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• Disturbances  

(𝐝[𝑘] ∈ ℝ𝐻 , 𝐻 ∈ ℕ): are independent variables that cannot be adjusted by the controller 
(they might also include measurement errors). 

• Parameters  

(𝐀 ∈ ℝ𝑁×𝑁, 𝐁 ∈ ℝ𝑁×𝑀 , 𝐂 ∈ ℝ𝐿×𝑁 , 𝐃 ∈ ℝ𝐿×𝑀 , 𝐄 ∈ ℝ𝑁×𝐻 , 𝐅 ∈ ℝ𝐿×𝐻): are model elements 
considered as "constants" during the optimization, which stand for inherent properties of 
nature (or of the materials and equipment involved in its transformation). 

2.1.2 Financial statements 

In this section, the different elements of a balance sheet are presented, taking into consideration 
the data and rules provided by the FADN, data and rules provided by RECAN and the variables 
chosen to be modelled as were considered to be the most relevant and defining for an agricultural 
holding. 

2.1.2.1 Balance Sheet 
The balance sheet includes asset items on the one hand and liability and equity on the other. 
Usually, asset accounts are ordered from the highest to the lowest degree of liquidity, while 
liability accounts are ordered from the highest to the lowest degree of enforceability. The balance 
sheet accounts are subdivided into several items. These items are described in the following 
sections, in accordance with the concepts defined in the EU FADN Regulation. 

Assets - Final Value (SE436) 

 

The year-end value of total fixed and regular assets. Only assets in ownership are considered. 

Total Assets = Fixed assets + Current assets 

• Fixed assets - Final value (SE441) Year-end value of all fixed assets: agricultural land, 
buildings, machinery and equipment, breeding livestock, intangible assets with no 
commercial value and other non-regular assets. 

• Land, permanent crops and quotas (SE446) Year-end value of owned agricultural land, 
permanent crops, land improvements, quotas and other rights, and forest land. 

• Machinery and equipment (SE455) Year-end value of the following equipment: machines, 
tractors, cars and vans, irrigation equipment (except those of low value or with a useful life 
of less than one year). 

• Current assets - Final value (SE465) Year-end value of all regular assets: stock of products, 
non-reproductive livestock and other current assets (cash and cash equivalents, receivables 
and other current assets). 

• Other working capital (SE480) Year-end value of cash and other assets that can be readily 
converted into cash, short-term assets and amounts due to operations. Current assets refer 
to assets that can be converted into cash in less than 1 year. 

Total Liabilities - Final Value (SE485) 
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The year-end value of the amounts of short-, medium- and long-term loans to be repaid for on-
farm purposes. 

Total Liabilities = Long-term liabilities + Short-term liabilities 

The following kinds of liabilities are assumed to exist in an agricultural holding: 

• Short-term debt (SE495): Short-term debt, also called current liabilities, is a firm’s financial 
obligations that are expected to be paid off within a year. In particular, this kind of liability 
will cover operational payments. 

• Long-term debt (SE490): Long-term debt is debt that matures in more than one year. In 
particular, this kind of liability will cover structural payments. 

Equity - Final value (SE501) 

 

The RECAN names the Equity as Net Worth (SE501) at closing validation and refers to the final 
value after subtracting to global assets all the liabilities of the farm. Mathematically it can be 
written as follows: 

Net Worth (Equity) = Total Assets + Total Liabilities 

2.1.2.2 Financial Ratios 
To determine the economic status of each farm holding, the current ratio is implemented as a 
measure of liquidity and the Debt to Equity ratio as a measure of solvency. 

The current ratio (CR) is a measure of the short-term financial health of an entity. It is also known 
as the working capital ratio. It will measure the relationship between current assets and current 
liabilities. It measures the firm’s ability to pay for all its current liabilities, due within the next 
year, by selling off all its current assets [3]. In the AGRICORE Model, the CR is assimilated into the 
Liquidity Ratio (LR). Its expression may be found below (the text in brackets refers to the code of 
the corresponding FADN standard variable): 

 

𝐿𝑅 =
Current Assets (SE465)

Current Liabilities (SE495) + Amortization of LT Liabilities
∈ ℝ+ (2) 

 

Hereby, depending on the value the LR has in each agricultural season, the farm will have or not 
have the capacity to meet its financial obligations in the short term. Regarding the formula, it is 
trivial to guess that the higher the ratio, the more liquid the company is. Commonly, the optimal 
LR value used is 2. However, 1.5 is commonly accepted as a healthy liquidity status for most 
industrial companies [4]. If the LR is too high (values much greater than 2), then the company 
may not be using its current assets or its short-term financing facilities efficiently, which may 
indicate problems in working capital management. 

On the other hand, Debt-to-Equity (D2E) ratio is a measure of the degree to which a company is 
financing its operations through debt versus wholly owned funds. More specifically, it reflects the 
ability of shareholder equity to cover all outstanding debts in the event of a business downturn. 
The D2E ratio is a particular type of gearing ratio used as a measure of entity solvency. Therefore, 
in AGRICORE, it is assimilated into the Solvency Ratio (SR). The SR’s expression, coincident with 
the D2E expression, may be found below: 
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𝑆𝑅 =
Farm Liabilities (SE485)

Farm Equity (SE501)
∈ ℝ (3) 

  

Given that the SR ratio measures a company’s debt relative to the value of its net assets, it is most 
often used to gauge the extent to which a company is taking on debt to leverage its assets. A high 
SR is often associated with high risk; it means that a company has been aggressive in financing its 
growth with debt. If a lot of debt is used to finance growth, a company could potentially generate 
more earnings than it would have without that financing. If leverage increases earnings by a 
greater amount than the debt’s cost (interest), then shareholders should expect to benefit. 
However, share values may decline if the cost of debt financing outweighs the increased income 
generated. The cost of debt can vary with market conditions. Thus, unprofitable borrowing may 
not be apparent at first. Changes in long-term debt and assets tend to have the greatest impact on 
the SR because they tend to be larger accounts compared to short-term debt and short-term 
assets. This is why it has been proposed another ratio for liquidity measuring [5]. 

As the equation of the SR reveals,𝑆𝑅 ∈ ℝ, and therefore it may be negative. Due to the fact that 
Farm Liabilities∈ ℝ+, the only way of SR < 0 is having Farm Equity < 0. This happens when the 
liabilities exceed the assets. This is considered a very risky sign, indicating that the company may 
be at risk of bankruptcy. According to CSIMarket [6], the closer the SR value to 0 (while positive), 
the stronger the company's balance sheet. SR > 2 reveals that the entity does not have a healthy 
solvency status [5]. In the case of agricultural holdings, it will be used as an objective value of 0.2. 

 

According to the model ℳ presented in deliverable D3.1, the financial ratios that evaluate the 
financial status of the agricultural holding may be modelled as follows: 

 

𝑁𝑃𝑡+1 =
𝐹𝑁𝐼𝑡+1

𝐸𝑡
 (4) 

 

𝑆𝑅𝑡+1 =
𝑇𝐴𝑡+1

𝐸𝑡+1
=

𝐹𝐴𝑡+1 + 𝐶𝐴𝑡+1

𝐹𝐴𝑡+1 + 𝐶𝐴𝑡+1 − 𝐿𝑇𝑡+1
 (5) 

2.1.3 Financial optimisation 

The assumption is that the Farm Manager makes decisions to maximise profitability and 
minimise the distance of the solvency ratio to long-term economic viability (solvency). 
Let 𝑥𝑡 ∈ ℝ𝑁, 𝑁 ∈ ℕ be the state vector which will serve as an indicator of the financial health at 
time𝑡of each farm. In our particular problem𝑁 = 2and, 

 

𝑥𝑡 = [
𝑁𝑃𝑡

𝑆𝑅𝑡
] ∈ ℝ2, (6) 

Where 𝑁𝑃𝑡 is a net profitability income ratio and𝑆𝑅𝑡is the solvency ratio. 

On the other hand, the decision vector or output vector 𝑢𝑡 ∈ ℝ𝐾 , 𝐾 ∈ ℕ. In our model,𝐾 = 3 and, 

𝑢𝑡 = [

𝐵𝑡
𝐿

𝐵𝑡
𝑀

𝐿𝑡

] ∈ ℝ3, (7) 
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where 𝐵𝑡
𝐿 ∈ ℝ and 𝐵𝑡

𝑀 ∈ ℝ represent, respectively, the desires for buying/selling land and 
machinery, and 𝐿𝑡 ∈ ℝ+ represent the acquisition of new long-term liabilities.  

It is proposed as a bi-objective problem. On the one hand, the farmer seeks to maximise 
profitability. On the other, the farmer also looks to keep the solvency close to healthy values. 

Let 𝑇 ∈ ℕ = 𝑚𝑖𝑛{7, years to retire} be 7 if the agent has more than 7 years left to retire or the 
number of years until retirement otherwise. The design of the model, 𝑇 works as our horizon of 
prediction. The objective function that mathematically describes the first objective can be 
expressed as: 

𝒥1(𝑁𝑃, 𝑢, 𝑡) = −∑𝑠=𝑡
𝑇+𝑡𝑁𝑃𝑠 (8) 

On the other hand, for any 𝑡 ∈ {1, . . . , 𝑇} the second objective can be expressed as follows:  

 

𝒥2(𝑆𝑅, 𝑢, 𝑡) = ∑ |

𝑇+𝑡

𝑠=𝑡

𝑆𝑅𝑠 − 𝑆 R |𝑜𝑏𝑗  (9) 

where 𝑆𝑅𝑜𝑏𝑗  designs the objective value of the solvency ratio. 

In addition, it is interesting to mention that a bi-objective problem has a surface of optimal 
decisions (Paretian efficiency, see [7]). On these surface, there are decisions more effective in one 
objective than on the other, and otherwise. But there is no optimal solution [7] To that end, by 
applying the Weighting Method [8], the two objective functions are translated into a single one. 

 

𝒥(𝑥, 𝑢, 𝑡) = −∑𝑠=𝑡
𝑇+𝑡𝛽𝑠−𝑡 ⋅ Ω ⋅ 𝑁𝑃𝑠 − 𝛽𝑠−𝑡 ⋅ Ψ ⋅ |𝑆𝑅𝑠 − 𝑆 R |𝑜𝑏𝑗  (10) 

where Ω > 0 and Ψ > 0 are the weights from combining the objective functions applying the 
weighting method [8].  

Both parameters are used to model the agent's behaviour, as detailed in the section "Modelling 
farmers' management of risks and uncertainty". On the other hand, 𝛽 ∈ (0,1] refers to the discount 
factor measuring how much weight an individual attaches to future profitability and solvency. 
This can also be related to risk aversion, as farmers with low concern for future situations (i.e. 
lower discount factors) tend to risk more to succeed in current objectives with consequences in 
the near future [9]. To conclude, the economic optimisation mimics the economic management 
decisions by means of which Agricultural Holding’s manager tries to steer the economic position 
of Agricultural Holding from its current state towards the ideal or target state. In order to 
calculate optimal economic control actions, the Farm Manager (and thus the model that 
represents him/her) has an insight into the dynamics of economic variables. How these economic 
dynamics are modelled in the AGRICORE model is explained in D3.1. In the following subsections, 
the restrictions of the optimisation problem are presented, and the final formulation of the 
financial optimisation problem is presented.  

2.1.3.1 Restriction of the optimisation problem 
The management of the agricultural holding is subject to a set of restrictions in the control inputs 
and/or in the agronomic states. These restrictions translate into constraints for the optimisation 
problem. Some of these restrictions  

• Restriction 1: There is a minimum amount of available machinery needed per amount of 
available area  
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𝐴𝑡 ⋅ 𝑃𝑚𝑎𝑐ℎ ≤ 𝑀 (11) 

where𝑃𝑚𝑎𝑐ℎis a ratio of the value of machinery needed per value of land. 

• Restriction 2: It is not possible to own negative land 

𝐴𝑡 ≥ 0 (12) 

• Restriction 3: It is not possible to own negative machinery 

𝑀𝑡 ≥ 0 (13) 

• Restriction 4: It is not possible to have negative GFI 

 

𝐺𝑁𝐼𝑡 ≥ 0 (14) 

• Restriction 5: It is not possible to have negative FNI 

 

𝐹𝑁𝐼𝑡 ≥ 0 (15) 

• Restriction 6: It has no sense negative values of Lt, as it represents money lent by a bank in a 
specific time 

 

𝐿𝑡 ≥ 0 (16) 

• Restriction 7: Banks loans are bounded. It is assumed that the maximum loan a bank can offer 
is c-times the current Equity(𝐸𝑡), with𝑐 ∈ ℝ+ 

 

𝐿𝑡 ≤ 𝑐 ⋅ 𝐸𝑡  (17) 

• Restriction 8: If the balance of buying and selling is positive, the farmer must acquire a loan 
to pay off commitments 

 

𝐵𝑡
𝐿 + 𝐵𝑡

𝑀 ≤ 𝐿𝑡 (18) 

• Restriction 9: It is not possible to sell more land that the owned 

 

−𝐴𝑡 ≤ 𝐵𝑡+1
𝐿  (19) 

• Restriction 10: It is not possible to sell more machinery that the one owned 

 

−𝑀𝑡 ≤ 𝐵𝑡+1
𝑀  (20) 

2.1.3.2 The final formulation of financial optimisation 
Let ℛ be the set of restrictions described by in the previous subsection. Finally, the purpose is to 
linearize the objective function in the following way.  

 

𝐽(𝑥, 𝑢, 𝑡) = −∑𝑠=𝑡
𝑇+𝑡𝛽𝑠−𝑡 ⋅ Ω ⋅ 𝑁𝑃𝑠 − 𝛽𝑠−𝑡 ⋅ Ψ ⋅ |𝑆𝑅𝑠 − 𝑆 R |𝑜𝑏𝑗  (21) 
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The underlying reason for linearising the objective function is that the solvers working with that 
are not capable of solving the nonlinear problem. For this reason, as a comment, note that a linear 
problem has been achieved since the denominator of the profitability term is a constant in each 
implementation since it refers to the value of Equity in the previous optimization step (but not, 
necessarily to the previous time step). Note also that both problems are equivalent in terms of 
expected behaviour. Actually, in the implementation, we select Ω with the same order of 
magnitude as 𝐸𝑡−1 to simplify the expression. 

Finally, the constrained optimization problem can be written as follows: 

 

𝑢𝑒
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 𝒥(𝑡, 𝑢, 𝑥) 

subject to ℳ[Model Constraint Eqs] 

ℛ[Input Constraint Eqs] 

(22) 

where the objective function 𝒥 is given by the equation (10). 

The solution to this problem is a sequence of optimal economic decisions 

 

𝑢𝑒
∗ = {𝑢𝑒

∗(1), . . . , 𝑢𝑒
∗(𝑇)} (23) 

 

which minimises the objective function by driving the Agricultural Holding (AH) towards 𝑆𝑅𝑜𝑏𝑗  
while optimizing its profitability. 

2.2 Short-term model - Agroeconomic planning of the agricultural 
holding operation 

2.2.1 PMP approach: cost estimation and calibration phase 

The introduction of PMP by Howitt (1995) [10] and Paris and Howitt (1998) [11] was perceived 
as one of the most important innovations in the field of Mathematical Programming. PMP has 
provided researchers in the field of agricultural economics with powerful new tools reviving 
mathematical programming and creating a bridge to econometrics [12]. PMP has opened a new 
research frontier and has created new opportunities for investigating land allocation under the 
pressure of new market and policy scenarios. 

The seminal works of 1995 and 1998 were criticised and discussed in many aspects, with the 
main areas of discussion as follows: 

• The PMP approach [13]; 

• The introduction of the positive constraints [14] [12]; 

• The estimation of the dual value linked to each production activity [15] [16]; 

• The use of Maximum Entropy and support values for the estimation of the Q matrix [17]; 

• The characteristics of the Q matrix (Diagonal or full) [18]; 

• The use of single observations compared with multiple observations [19]; 

• The possibility of introducing new activities [20]. 

Literature has two main implications related to the effective implementation of PMP 
methodology. The first is associated with the objective of PMP methodology. PMP was perceived 
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by many researchers as a good tool to calibrate LP models, especially when dealing with problems 
of over-specialisation [18] [21] [15] [22](Helming et al., 2001; Heckelei, 2002; Buysse et al., 
2007; Kanellopoulos, 2010). A related issue is the “tautology problem” that was perceived as a 
negative element of the PMP methodology [23]. 

The second most important implication of the standard PMP approach is the difficulty of 
estimating the Q matrix that considers all the observed activities when no information is available 
related to the activity costs, c. The problem of implementing the PMP model without knowing c 
is related to the fact that the imposition of calibration constraints generates at least one 
associated shadow value equal to zero; otherwise, the shadow price for the structural constraint 
(land) will be equal to zero [11]and will be missed an observed activity in the Q matrix. 

Given the methodological setting of the PMP, an alternative approach is proposed with the 
objective to use only the endogenous information available for all farms belonging to the FADN 
database and thus maintain flexibility in terms of creating models able to describe and represent 
different situations according to the research questions and then consider different farm types at 
different territorial levels, starting from individual farms. For this reason a “generalised” model 
is proposed to allow for the new formulation of PMP to be used in a different context (for details 
on the theoretical formulation, see D5.3 Modelling Supply Chain in the AGRICORE platform). 

The model can be presented as follows: assume a sample of farms composed of N farms and 
consider that information about the production plan, prices and technical coefficients (the 
quantity of factors used to obtain one unit of each farm product) are known at the farm level. It 
is also considered only one limiting factor, the land available at the farm level, 𝑏𝑛. The use of this 
factor per unit output is represented by the technology matrix𝐴𝑛. The known levels of production 
for each farm are indicated by the vector 𝐱𝑛, while output market prices are represented by the 
vector 𝐩𝑛  and exogenous marginal costs related to each activity are represented by the vector𝐜𝑛. 
This latter variable can be viewed as the cost originating from the farm accountancy and is 
observed. 

The objective of a PMP model is to recover the part of the information that cannot be directly 
collected at the farm but contributes to farmers' decision-making process in a more or less 
conscious way. 

Adopting the generalised PMP approach the following problem can be introduced: 

m {𝐮𝑛,𝐲𝑛,𝜆𝑛,𝐐 ∑𝑛=1
𝑁

1

2
𝐮′

𝑛𝐮𝑛 + ∑𝑛=1
𝑁 (𝑏𝑛𝑦𝑛 + 𝜆𝑛

′ 𝐱
¯

𝑛 + 𝐜𝑛
′ 𝐱

¯

𝑛) − 𝐩𝑛
′ x }𝑛  

subject to 

(24) 

 

𝐀𝑛
′ 𝐲𝑛 + 𝜆𝑛 + 𝐜𝑛 ≥ 𝐩𝑛(𝐰𝑛) (25) 

 

𝐜𝑛 + 𝜆𝑛 = 𝐐𝐱
¯

𝑛 + 𝐮𝑛(𝐳𝑛) (26) 

 

Where: 

• 𝑦𝑛 ≥ 0, 𝜆𝑛 ≥ 0 
• 𝑄 is a symmetric positive semi-definite matrix, as stated by Paris and Howitt (1998) [11] and 

Paris (2010)[23]. 

• 𝐰𝑛 and 𝐳𝑛 are the shadow prices associated with equations (25) and (26), respectively 

• 𝐮𝑛 is the vector of marginal cost deviations per farm, that is, the distance between the 
marginal cost 𝑐 + 𝜆 and the marginal cost 𝑄𝑥 of a non-linear cost function such that: 

𝑐 + 𝜆 − 𝑄𝑥 = 𝑢 (27) 
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The estimated parameters of 𝑄 are part of a quadratic cost function aiming at providing flexibility 
to model responses towards farm simulations. 

The model is optimised by a combined objective function, (24), that considers a least-squares 
technique and minimises the difference between the total revenue, 𝑝′𝑥, and the total 
cost, 𝑏𝑦 + 𝜆′𝐱 + 𝐜′𝐱. This latter expression identifies the optimal condition for the standard PMP 
approach, or in general terms, states that under optimal conditions, the primal objective function 
should be equal to the dual function. 

The above model integrates the first and second phases of the standard PMP approach using the 
PMP dual properties. In this model, there is no explicit trace of both: the calibrating constraints 
and the epsilon terms that help to break the linear dependence between structural and 
calibration constraints. 

The constraints of the model (25)-(26) concern the equilibrium conditions with marginal costs 
greater than or equal to marginal revenue and the relationship by which a linear cost function is 
shifted to a quadratic cost function. 

The model does not repeat the tautological procedure of the standard approach of deriving 
information about the output levels, which were already known before the model was developed, 
but rather reveals hidden information about the differential marginal costs within the production 
levels and makes this information available for the simulation phase. 

To better understand the significance of this problem and the properties of the solution, the 
model is transformed in its alternative Lagrangean representation, as follows: 

𝐿 = ∑𝑛=1
𝑁

1

2
𝐮𝑛

′ 𝐮𝑛 + ∑(𝑏𝑛𝑦𝑛 + 𝜆𝑛
′ 𝐱

¯

𝑛 + 𝐜𝑛
′ 𝐱

¯

𝑛 − 𝐩𝑛
′ 𝐱

¯

𝑛)

𝑁

𝑛=1

+∑𝑛=1
𝑁 w (𝐩𝑛 − 𝐴𝑛

′ 𝑦𝑛 − 𝝀𝑛 − 𝐜𝑛)′
𝑛 + ∑𝑛=1

𝑁 z (𝝀𝑛 + 𝐜𝑛 − 𝐐𝐱
¯

𝑛 − 𝐮𝑛)′
𝑛

 (28) 

From the Lagrangian function is obtained the following relevant KKT conditions: 

 

∂𝐿

∂𝑦𝑛
= 𝑏𝑛 − 𝐴𝑛𝐰𝑛 ≥ 0 (29) 

 

∂𝐿

∂𝝀𝑛
= 𝐱

¯

𝑛 − 𝐰𝑛 + 𝐳𝑛 ≥ 𝟎 (30) 

 

∂𝐿

∂𝑦𝑛
= 𝑏𝑛 − 𝐴𝑛𝐰𝑛 ≥ 0 (31) 

 

The partial derivatives (29) indicate that the deviation terms, 𝐮𝑛, are equal to the dual values, 𝐳𝑛  , 
linked to the equation (26). 

Because the problem attempts to minimise the squares of the farm cost, the 
deviations𝐮𝑛  and𝐳𝑛  should assume very small values close to zero. 

The KKT condition (30) can be rewritten as 𝐰𝑛 − 𝐳𝑛 ≤ 𝐱
¯

𝑛
, showing that the difference between 

the two shadow prices associated with equations (25) and (26) should be less than or equal to 
the realized outputs. 
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The generalised PMP approach assumes knowledge of information related to the accounting cost 
c, but it is well known that this information is lacking at the European level. In addition, to 
properly represent the observed land use for each farm in the sample, the “self selection” problem 
should be considered (Paris and Arfini, 2000). 

According to this objective, models (24) – (26) take the information related to the total variable 
costs available at the farm level in the European FADN as a guide for the accounting cost 
estimation and is modified in the following manner: 

𝑚𝑖𝑛
𝑢

𝐿𝑆 =
1

2
𝐮′𝐮 

subject to 

(32) 

 

𝜶 + 𝝀 = 𝐑′𝐑𝐱
¯

+ 𝐮 se 𝑥
¯

> 0 (33) 
 

𝜶 + 𝝀 ≤ 𝐑′𝐑𝐱
¯

+ 𝐮 se 𝑥
¯

= 0 (34) 
 

𝛼′𝐱
¯

≤ 𝑇𝑉𝐶 (35) 
 

𝐮′𝐱
¯

+
1

2
𝐱
¯ ′(𝐑′𝐑)𝐱

¯
≥ 𝑇𝑉𝐶 (36) 

 

𝜶 + 𝝀 + 𝐀′𝐲 ≥ 𝐩 (37) 
 

𝐛′𝐲 + 𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝜆′𝐱
¯

= (𝐩 − 𝜶)′𝐱
¯
 (38) 

 

𝐑 = 𝐋𝐃1/2 (39) 
 

∑𝑛=1
𝑁 𝑢𝑛,𝑗 = 0 (40) 

 

The objective of models (32)-(40) is to estimate a non-linear cost function, including the unknown 
accounting variable cost 𝛼. The restrictions (33) and (34) define the relationship between 
marginal costs derived from a linear function and marginal costs derived from a quadratic cost 
function. 

𝛼 + 𝜆 defines the sum of the unknown (or estimated) accounting variable costs and the 
differential variable marginal costs. The latter is implicit in the decision-making process of the 
entrepreneur and is not accounted for in the holding’s bookkeeping. Both components are 
endogenous variables within the minimisation problem. 

The restrictions (33) and (34) also guarantee that the self-selection rule is followed, enabling 
farmers to select possible production activities from all activities present in the region 
(represented by the sample dimension) but restricting activities to those observed in the first 
phase of the PMP methodology. Moreover, to guarantee consistency between the estimated 
accounting variable costs and those effectively recorded by the farm accounting system, 
constraint (35) requires that the total estimated variable cost is not greater than the total variable 
cost observed in the FADN databank at the farm level. Equation (36) states that the costs 
estimated by the model by means of a non-linear cost function must be at least equal to the value 
of the observed total variable cost (TVC). To guarantee consistency between the estimation 
process and the optimal conditions, restriction (37) introduces the traditional economic 
equilibrium condition, where total marginal costs must be greater than or equal to marginal 
revenues. The total marginal costs also consider the use cost of the factors of production defined 
by the product of the technical coefficients matrix 𝐀′ and the shadow price of the restricting 
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factors y; while the marginal revenues are defined by the sum of the products’ selling prices,p, 
and any associated public coupled subsidies. The additional constraint (38) defines the optimal 
condition where the value of the primal function corresponds exactly to the value of the objective 
function of the dual problem. To ensure that the matrix of the quadratic cost function is symmetric 
positive semi-definite, the model adopts Cholesky’s decomposition method (39). Finally, 
restriction (40) establishes that the sum of the errorsumust be equivalent to zero. 

2.2.2 Agroeconomic optimisation 

Once the model is calibrated, the cost function estimated with the model (32)-(40) may be used 
in a model of maximisation of the farm gross margin, ignoring the calibration restrictions 
imposed during the first phase of the standard PMP approach. In this case, the dual relations 
entered in the preceding cost estimation model guarantee the reproduction of the observed 
situation. The model, therefore, appears as follows: 

𝑚𝑎𝑥
𝑥≥0

𝑀𝐿 = 𝐩′𝐱 − {
1

2
𝐱′ Q 𝐱^ + 𝐮

^ ′𝐱} 

subject to 

(41) 

 

Ax ≤ b (42) 
 

𝐴𝑗𝑥𝑗 − ℎ𝑗 = 0∀𝑗 = 1, . . . , 𝐽 (43) 

Constraint (23) represents the restriction on the structural capacity of the farm, while relation 
(24) enables us to obtain information on the hectares of land (or the number of animals) 
associated with each process j. Once the initial situation has been calibrated through the 
maximisation of the farm gross margin, it is possible to introduce variations in the public aid 
mechanisms and/or in the market price levels to evaluate the farm’s reactions to various policy 
conditions. The reaction of the farm production plan will take into account the information used 
during the estimation phase of the cost function, where it is possible to identify a real, true matrix 
of firm choices, i.e., Q. 

The objective function represents the economic part of the model by considering the prices and 
costs (implicit and explicit) associated with each process as well as any payments (coupled or 
decoupled) linked to the agricultural policies introduced by CAP through the different 
intervention measures. 

The structure of constraints allows describing the technology used by farmers while taking into 
account also the rules that define their choice behaviour regarding:  

a) the optimal productive combination  

 

Ax ≤ b 

𝐴𝑗𝑥𝑗 − ℎ𝑗 = 0∀𝑗 = 1, . . . , 𝐽 
(44) 

 

Where A is the technical matrix, 𝐱 are the production volumes for each crop and 𝐛 is the vector of 
land availability. 

b) the possibility of renting land and/or leasing land, taking into account behavioural rules 
defined on the basis of socio-economic characteristics of farmers 

𝐴𝑛𝑗𝑥𝑛 ≤ 𝑏𝑛 + 𝑍𝑛 − 𝑉𝑛 (45) 
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Where the constraint reflects the assumption that each farm can lease (𝑍) or rent (𝑉) land at the 
same price. Prices are exogenous to the the short period module, they are calculated in the Land 
Market Module (D 5.2) and are defined in the objective functions. 

c) the possibility of introducing new activities into the production plan and in particular the 
possibility of converting the production plan from conventional to organic farming 

𝐀𝑐𝐱𝑐 + 𝐀𝑔𝐱𝑔 ≤ 𝐛

𝐴𝑛𝑐𝑥𝑛𝑐 ⋅ 𝐴𝑛𝑔𝑥𝑛𝑔 = 0
 (46) 

 

A new crop is considered in the technical matrix with a different yield than the existing crop. 

d) the ability to simulate the financial requirement for each crop versus the available financial 
resources. 

e) the ability to simulate the impact of new environmental constraints introduced within the 
new CAP 

f) the possibility of monitoring the use of natural resources and negative externalities to the 
environment. 

Thus this module allows the introduction of variations in the public aid mechanisms and/or in 
the market price levels to evaluate the farm’s reactions to various market and policy conditions. 
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3 Modelling farmers' management of risks and uncertainty 

The management of an agricultural holding directly depends on the decisions made by the farmer. 
In the decision-making process, the farmer must consider many factors to carry out the most 
suitable decisions according to her/his objectives because any decision entails outcomes and 
consequences that are reflected in the farm income. Given that it is impossible to accurately 
predict a decision's consequences, risk and uncertainty are associated with any agro-
management decision. The levels of these parameters vary according to the decision and the 
context, e.g. for a farmer whose profit from farming in the previous agricultural season was low, 
buying land to expand her/his farm is riskier than renting it. Despite this, not all farmers have the 
same attitude towards risk and they usually perceive it differently, which allows for classifying 
them into three categories: risk-averse, risk-takers and risk-neutral [24]. Therefore, the 
measurement and modelling of risk are complicated. 

As stated in [25], the methods to measure and model individual risk preferences can be divided 
into two groups according to the available data. On the one side, econometric and mathematical 
methods can be used to estimate the risk aversion level of farmers based on their economic 
behaviour. On the other side, multi-item scales and lottery-choices activities can be carried out to 
collect raw data on the risk preferences of farmers and, based on them, risk aversion can be 
estimated. 

In the initial stages of the project, it was not known whether it would be possible to access 
economic data resulting from farmers' management in order to estimate risk aversion. Moreover, 
in recent years, an upward trend of the second group of methods for measuring farmers' risk 
aversion in Europe was observed [26]. For these reasons, it was decided to collect the data 
empirically by means of questionnaires including multi-item scales and lottery choice questions. 
To this end, three survey campaigns have been conducted and the same questions to measure 
risk aversion were used in order to obtain homogenised results and compare them. 

As explained in D3.1, AGRICORE's mathematical model has a bi-objective function that aims to 
maximise the agent's economic profitability and solvency. These two terms of the function are 
weighted by two coefficients, Ω and Ψ, which indicate the importance that the agent gives to each 
of them and guide its decision-making. In this economic context, risk aversion has been defined 
as the tendency of a farmer to take on debt and invest his money in order to achieve a higher 
profit from her/his farming activity. This has a direct relationship with the coefficients mentioned 
above, as a risky farmer will tend to take on more debt in order to make more profit (Ω > Ψ), e.g. 
increase the size of his farm in order to grow more crops and increase production. From this, it 
can be deduced that the two coefficients are inversely related and will be complementary, 
although this is not conclusive as the model has not yet been fully tested. Furthermore, the 
projection over time of the farmer's management must be considered. That is, the decisions taken 
by the farmer have both immediate and future consequences. For this purpose, the coefficient 𝛽, 
which multiplies both terms of the objective function, was included to model the importance the 
farmer attaches to her/his profitability and solvency in the following seasons. This is also related 
to risk aversion, as a risk-averse farmer tends to be foresighted and consider the future 
consequences of her/his decisions. For instance, a risk-averse farmer would be less probable to 
invest more than the profit obtained in her/his last agricultural season to buy land and expand 
her/his exploitation because s/he would consider the increase in the agricultural costs 
(machinery, water, etc.) that entails this operation and as a consequence, her/his debt would 
increase. 

Although the role of risk aversion in the optimisation problem is clear, at this point, there are 
some open issues regarding this. Firstly, as mentioned before, the relation between both 
coefficients must be determined. Secondly, it is not clear how the data collected through the 
survey campaigns will be used to estimate these coefficients. A first alternative is to deeply 
analyse those data in order to extract some correlations between the features of the farmer and 
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her/his farm and the measured risk aversion. This will allow for assigning a risk-aversion ratio 
to each agent according to its attributes as they are generated by the synthetic population 
generation module. However, the analysis until now does not reflect a clear and strong 
correlation, so a deeper analysis will be carried out to accept or reject this approach. As an 
alternative, a risk aversion distribution could be extracted from the raw data and a risk-aversion 
rate could be assigned to each agent according to it. For both approaches, some preliminary 
conclusions of the analysis of the data collected through survey campaigns could be used to 
determine the coefficients mentioned above: 

• In the Andalusian survey campaign, it was detected that most organic olive farmers were 
high-mid risk-averse (almost 95%) and that the larger the organic olive orchard, the riskier 
the organic farmer is. Moreover, it was also observed that the farmers maintain their risk-
aversion level even though the benefits of the operation are higher. 

• In the Polish use case, the survey reflects that no significant differences can be observed 
between the risk perception of beneficiaries and non-beneficiaries of M6.1 farmers. 

• Greek survey campaign shows that gender is an important factor in the level of investment 
and innovativeness and that a higher education level is positively correlated with the 
willingness to invest and innovate. In addition, this positive correlation is also observed with 
the size of the agricultural holding. 

Finally, it should be noted that, in addition to assessing the level of risk aversion of the farmers, 
the propensity to innovate was also measured by employing the same methods. In this case, the 
innovation ratio is understood as a tendency of farmers to choose cutting-edge technologies and 
methods, which are understood to improve resource management on the farm, as opposed to 
traditional technologies and methods. However, the model that has been developed in AGRICORE 
does not consider this ratio, and a priori, this information will not be used explicitly in the 
modelling. As a future improvement of the tool, this innovation ratio could be used to determine 
which technologies the farmer opts for and thus achieve a deeper optimisation. For this, it would 
be necessary to estimate the effect of each of these technologies on farm income. 
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4 Types of constraints affecting the optimisation problems 

The constraints are physical limitations due to physical or design limitations or external factors, 
such as the available land for agricultural activities within a geographical region (e.g. NUTS3), or 
policies. All in all, the restrictions reduce the dimensionality of the optimisation problem, they 
shape the problem and spotlight the solution to the imposed specifications. That is why their 
correct handling is essential in all the disciplines involved within the AGRICORE’s tool 
development (e.g. mathematics, control theory). In this sense, as already presented in the MPC 
presentation, one of the main advantages of the MPC methodology was the explicit management 
of constraints within its operational framework. Which perfectly couples with the constrained 
optimisation problems presented for both the ST and LT.  

The previous sections have presented the mathematical formulation of the optimisation problem, 
including all the constraints imposed by different factors. In the following subsections, there will 
be detailed types of constraints and those factors. Below, in the following subsections, the 
constraints are in first place divided based on what those restricted in the MPC and modelling 
framework, the inputs/decisions and the states. In the second place, the constraints will be 
categorized based on their cause (e.g. structural, market, financial, …). As described below, there 
is a list of some of the causes of the constraints: 

• Agricultural holding constraints are defined by the farm size and economics. Those 
constraints regulate some financial decisions, such as the acquisition of a loan, land 
management and crop rotation due to the farm size and available land. 

• Strategic constraints are defined by the agent's behaviour and financial state. Those 
constraints mainly regulate the control actions, such as increasing or decreasing the available 
land. 

• Market constraints are defined by the different markets with which the agents interact, such 
as the land or product market.  

• Technological constraints, which regulate the introduction of new technologies and new 
activities, such as the transition to organic farming; 

• Policy constraints, which regulate how certain agricultural policy actions (such as eco-
schemes) are defined at a regional level; There will be a special dedicated section on the 
policy constraints given AGRICORE’s project's main objective.   

4.1 Input Constraints 

The input constraints limit the decision-making of the agents. Without those constraints, the 
resolution of the optimisation problem may lead to solutions that are unfeasible in practice. Most 
of those constraints are imposed by the own agricultural holding states, such as financial status. 
Moreover, others are imposed by external factors such as the land market or the product market. 
And last, physical factors, imposed by the own environment and physical limitations such as 
selling more land than the owned or buying more than the available. 

For example, if an agent estimates very high production for the next agricultural campaign, it will 
try to increase it by buying land through the land market, the available land, and, consequently, 
the agricultural land utilised. However, the amount of land is restricted by several factors. In the 
first place, due to the capital available and the maximum loan available. In the second place, due 
to the land on sale in the land market, an indirect restriction is imposed by the land market 
resolution. And in the third place, due to the agricultural land available within the geographical 
region (NUTS3) that the agent belongs, implicit restrictions. Within this example, each restriction 
is imposed due to a different nature. The first one is imposed by the financial status of the agent. 
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The second one is imposed by external factors, which in this case is the land market. For last the 
third one is imposed by physical limitations. All in all, those restrictions limit the decision-making 
of the agent. 

4.2 States Constraints 

The state constraints act as bonds for given variables, determined by the nature of the problem 
and the agents' own attributes. An example of a constraint due to a physical nature is the 
restriction imposed by eq.10, which reflects that an agricultural holding cannot own a negative 
amount of land. On the other hand, an example of a constraint imposed by the agent's own state, 
limiting factors such as the structural capacity of the farm (i.e. land available), is imposed by 
eq.38, which reflects that selected any technological alternative (A), the land required to produce 
x must always be below the land available. In this case, the restriction can be eased by increasing 
the available land by buying or renting in a new land. Nevertheless, as seen in the previous 
subsection, these kinds of actions are restricted too, by the financial status of the agricultural 
holding or by the market.  

4.3 Policy Constraints 

AGRICORE tool's main objective is to enable the review of different policy strategies simulating 
their impact on a synthetic population that reflects the real one. In this sense, policy constraints 
are key. Those restrictions are imposed by the EU and/or local government, so for the agents, 
they are reflected as external factors. Moreover, those restrictions can adjust both decisions and 
states of the agents. These kinds of constraints can be imposed on all the agents within the region, 
or the agent can apply voluntarily to them in order to receive a subsidy in return if the 
requirements are fulfilled. Those policies are translated to mathematical formulation through the 
Policy Environment Module (described in detail in D5.7). Further on, these mathematical 
formulations are integrated as constraints within the agent's optimisation problem previously 
detailed.  

As part of the AGRICORE project, each use case is studied with a different policy; hence all of them 
have to be considered as constraints for the optimisation problem if the agent applies to the policy 
in order to receive the subsidy. For example, the Spanish use case focuses on ecological farming 
and how the subsidies received by following this type of farming impact the agents' decision-
making. The ecological farming policy constraints are reflected in the optimisation problem 
through technological alternatives. In this sense, in order to receive the subsidy, the agent must 
fulfil several constraints, such as not using fertilizers and biocides and reducing the use of water. 
Consequently, the production of the farm will probably decrease. Nevertheless, the subsidies 
should overcome the revenue lost due to lower production.  
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5 Iterative LT-ST optimisation sequence 

As described above, the AGRICORE model consists of an interaction between long-term and short-
term scenarios through two interlinked modules. With regards to the short-term module, the 
PMP approach allows taking into account the characteristics of the farm holder from a structural 
and strategic point of view, by estimating the implicit marginal costs, representing the cost that 
the farmer may incur by adapting his production plan to the changes imposed by policies or price 
conditions. The PMP is particularly suited to represent agents, thanks to its capacity to describe 
farms' behaviour by quantifying the costs incurred, the decision-making process and the 
relationship between agents. 

The PMP methodology, theoretically described in "Short-term model - Agroeconomic planning of 
the agricultural holding operation" is implemented in AGRICORE in GAMS (General Algebraic 
Modeling System, www.gams.com). GAMS is a high-level modelling system for mathematical 
programming and optimisation for solving linear and non-linear mathematical programming 
problems, as well as general equilibrium models and stochastic optimization problems. It consists 
of a language compiler and a range of associated solvers, which was developed by the World Bank 
in 1976 and became a commercial product in 1987. Using GAMS, the mathematical model has 
been developed to reproduce farmers' behaviour in the observed situation (represented by the 
calibration phase of the model) and in the market and agricultural policy scenarios. Those 
scenarios are defined on an annual basis, and they influence the production choices and 
agronomic planning of the farm holding. 

On the other hand, the financial optimisation has been programmed in Python 3.0. Furthermore, 
there has been implemented the commercial solver of Gurobi [www.gurobi.com], because it is a 
state-of-the-art solver for linear programming, quadratic and quadratically constrained 
programming. In addition, Gurobi can be easily coupled with Python which will highly facilitate 
the implementation.  

All in all, both sub-modules complement each other through a fluent interaction and following 
the diagram workflow of the whole presented in D3.1. Below, through several diagram figures, is 
illustrated and detailed the MPC workflow and its submodules execution and interaction.  

 

(a) Last state read and computation of error between objective state and current state. 

 

(b1) Financial-based structural planning based on 
MPC 

 

(b2) The EMPC is used to predict alternative 
financial trajectories of the holding 

for different input sequences 

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.gams.com%2F&data=05%7C01%7Clisa.baldi%40unipr.it%7Cb68939ed1e1c412c145c08daa2dd85b2%7Cbb064bc5b7a841ecbabed7beb3faeb1c%7C0%7C0%7C638001369551009654%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=dNDli1LUmPZ4C8e5bm1BFqZqlbi4uhwc1oo9m0OGXbQ%3D&reserved=0
https://www.gurobi.com/
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(c) Land trading intentions are introduced in the LMM, which returns the actual achieved land 
exchanges. 

 

(d1) Once the actual Land and Capital availability 
(Economic Constraints) 

for the current step (campaign) are known, 
the economic-based activity planning is solved. 

 

(d2) The agroeconomic (and eventually the 
BioPhysical) model(s) are taken into 

consideration to  

predict the effect of different sequences of activity 
combos. 

 

(e) The set of Financial and Agronomic management decisions are applied to the Synthetic 
Agricultural Holding, and simulated using external drivers (climate, policies, interactions, etc...). 

The results are the production outputs (𝑦𝑡+1) and the variation of AH's states (𝑥𝑡+1). Notice that, due 

to external disturbances and mismatch between the prediction model and the simulation model, 

the reached state (𝑥𝑡+1) might differ from the predicted one𝑥
^

𝑡+1
. 

 

(f1) The new states are fed back into the 
prediction model and the tracking error is 

recomputed 

before the next optimisation-simulation iteration. 

 

(f2) The system tries again to steer the updated 
current states to the objective state by 

recomputing a new 

optimal trajectory of future inputs.  
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6 Conclusions 

In this deliverable is presented how the rationale of the agricultural holders is modelled 
mathematically within the agent's optimisation problem. The methodology followed is based on 
a model predictive control (MPC) approach. This strategy requires a dynamic model in order to 
predict future behaviours of the system during the horizon of prediction. As already detailed at 
the beginning of the deliverable, the MPC approach has several advantages, making it the perfect 
match for the problem handled within AGRICORE and also fits with the ABM approach. 

During the development, in order to simplify the problem and achieve better results, there has 
been decided to separate the optimisation problem into two submodels interconnected. On the 
one hand, the first submodel focuses on the optimisation done by the agents in the long-term 
(LT), related to the financial aspects of the agricultural holding. On the other hand, the second 
submodel focuses on the optimisation done by the agents in the short-term (ST) (1 year), related 
to the agroeconomical aspects of the agricultural holding.  Both submodels include behaviour 
parameters that shape the optimisation problem to the agent's rationale, such as risk aversion.  
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