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Executive Summary 

AGRICORE is a research project funded by the European Commission under the RUR-04-2018 
call, part of the H2020 programme, which proposes an innovative way to apply agent-based 
modelling to improve the capacity of policymakers to evaluate the impact of agricultural-related 
measurements under and outside the framework of the Common Agricultural Policy (CAP). 

One of the essential inputs to execute this agent-based modelling approach is the synthetic 
population of agents. This is a set of autonomous decision-makers entities defined by some 
attributes of interest that mimics the distribution and features of the real farmers’ population of 
interest. This deliverable presents the AGRICORE synthetic population generation (SPG) 
module, finalising the developments in WP4. To this end, a Bayesian network learning algorithm 
has been designed to model the visible and hidden relationships between the attributes of the 
agents based on the output of the data fusion module (D2.3), FADN data and other data sources.  

In this deliverable, the complete procedure, including the employed techniques, is explained. 
This must guarantee a resulting representative synthetic population whose agents cannot be 
identified with any of the sample farms or farmers in FADN or the real population. To this end, 
algorithms and procedures have been defined to be able to scale up from synthetic samples that 
can be completely evaluated with eh FADN data to synthetic populations that must be realistic 
and whose validation is limited by the available census data. For this purpose, a representation 
weights calculation approach has been proposed, obtaining more accurate results than applying 
the FADN weights. 
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Abbreviations 

Abbreviation Full name 

ABM Agent-based model 

AoI Attributes of interest 

BIC Bayesian Information Criterion 

BN Bayesian network 

CI Conditional independence 

CO Combinatorial optimisation 

DAG Directed acyclic graph 

DEM Data extraction module 

DFM Data fusion module 

DWH Data Warehouse 

FADN Farm Accountancy Data Network 

HC Hill Climbing 

IPF Iterative Proportional Fitting 

IPU Iterative Proportional Updating 

KDE Kernel density estimation 

MCMC Markov Chain Monte Carlo 

MMPC Max-Min Parents and Children 

PCA Principal component analysis 

SP Synthetic population 

SPG Synthetic population generation 

SR Synthetic reconstruction 

SS Synthetic sample 
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1 Introduction 

The synthetic population generation (SPG) module is the last step before the use case simulation. 
This module finalises the work done in WP4 since the beginning of the project, which 
encompasses the data storage in the Data Warehouse (DWH), processing of those data and their 
transformation into valuable information in the form of a synthetic population (SP). The whole 
proposed workflow is carried out by four modules, as can be observed in Figure 1: AGRICORE 
DWH (D2), Big Data Extraction Module (D3), Big Data Fusion Module (D4) and Synthetic 
Population Generator (D5). The first three modules were already developed and presented in 
deliverables 2.1, 2.2 and 2.3, respectively. This deliverable addresses the development of the final 
module, which outputs a that mimics the distribution and features of the real farmers’ population 
of interest. 

 

Figure 1. Modular architecture for AGRICORE. 

The generation of the SP is towards a Bayesian Network (BN), mainly based on the available 
FADN data of the population of interest. As was explained in D2.3, Data Fusion Module (DFM) is 
in charge of extracting the joint probability distributions of some carefully selected Attributes of 
Interest (AoI). These define each synthetic farmer determining his/her behaviour during the 
simulation. Then, this information is processed with a set of techniques to determine the 
relationships between attributes. This results in a BN, such as Figure 2. This is a probabilistic 
graphical model that represents the conditional (in)dependencies between attributes (nodes or 
vertices) through arcs that indicate the direction of the relationship. For the SPG task, the model 
takes the form of a directed acyclic graph (DAG), where parents and child nodes can be observed, 
and the thickness of the arcs represents the strength of the relationships. 
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Figure 2. Example of DAG. 

In D2.3, the extraction of the relationships between attributes was explained, which was 
illustrated with the generation of the synthetic sample (SS) of three Greek NUTS-2 regions. D2.4 
goes one step further and describes the procedure to obtain a fully realistic SP. This consists of 
increasing the size of the SS until it coincides with the size of the real population, avoiding 
incurring biases and maintaining representativeness. For this purpose, the obtained SP must fulfil 
the following characteristics: targeted (contain just AoI without unnecessary information), 
microscopic (each agent represents an individual farmer) and anonymised (it must be impossible 
to univocally identify a synthetic agent with any of the actual farms or farmers in the sample). 
This SP is the input of the agent-based model (ABM) that simulates the evolution of the SP under 
specific conditions of the use case. In it, the agents will behave as individual and autonomous 
decision-making entities that asses their context and act according to their situation, expectations 
and objectives. 

The remaining part of the deliverable is structured as follows: section 2 briefly summarises the 
exchange of information between the SPG module and DFM (input), and ABM module (output). 
Section 3 reviews the main concepts and methods for the development of BNs presented in D2.3 
but elaborates on a few aspects. Section 4 explains the main concepts of SPG and introduces 
different state-of-the-art approaches with BNs and how they are evaluated. The advantages and 
limitations of those approaches are addressed in Section 5. The next section illustrates the results 
of applying the selected methodologies in the generation of SP, as well as the most relevant issues 
detected. Finally, conclusions are presented in section 7.  
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2 Module connections 

The connection of the GPS module is in line with the other modules developed in WP4. That is, 
there is no direct connection between the modules, but they communicate through the DWH. For 
this purpose, the SPG module must have the necessary permissions to upload and download files 
from the DWH. This internal operation gives the generation of SPs greater modularity, although 
the user perceives it as if the DEM, DFM and SPG modules are cascaded from the datasets stored 
in the DWH to the generation of the SP. In this way, the connections to the SPG module are 
reflected in Figure 3. 

 

Figure 3. Connections with the DFM and ABM modules. 

On the one hand, the input to the SPG module is the file(s) defining the BN, which was obtained 
from the processing carried out by the DFM. These file(s) are stored in the DWH and contain the 
following information: 

• The textual definition of the BN. 

• The list of attributes that are entirely independent and could be generated independently and 
in parallel, as well as the sequence in which the values of correlated attributes should be 
generated. 

• The probability distribution functions (PDFs), expressed as mathematical expressions or 
marginal tables, required to provide such attributes. 

On the other hand, the output of the SPG module will also be stored in the DWH and will be 
accessed by the ABM module to simulate the SPs. This output could be composed exclusively of 
the values of the attributes of interest of each agent in the SP; however, other intermediate 
outputs are stored to ensure replicability and increase the transparency of the process. 

• Representation weight of each agent in terms of cultivated area and livestock in the actual 
population. These weights allow scaling from the SS to the SP, generating as many agents as 
the real population. 

• Changelog file of the attributes. After generating the first version of the SP, its 
representativeness is checked with the total data of the real population of interest. If it is 
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necessary to adjust the population, the value of some attributes in certain agents is modified. 
These changes would be saved in a plain text file. 

• Synthetic population. A CSV or similar file where the numerical values of the AoI for all agents 
in the SP are stored. 

The last file is really the data the ABM module will access to run the simulation. The procedure of 
the whole simulation is described in WP3 deliverables in more detail. Basically, once each 
simulation year starts, each agent plans the allocation of crops and livestock based on its financial 
status and context (agricultural policies, available land, soil conditions, risk aversion, willingness 
to innovate, etc.), which are determined by its attributes and expectations regarding external 
factors, such as climate. This process includes a set of short-term agro-management decisions, 
which are constrained by long-term decisions on the economic level. Afterwards, the simulation 
starts, and the status of each agent changes according to its planning and external conditions. 
With this new scenario, which can match or not with the initial expectations, each farmer re-
evaluates its context and plans for the next simulation year. 
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3 Introduction to Synthetic Population Generation 

Synthetic population generation is a field with significant growth in recent years, especially due 
to the use of ABM models. Although BNs are the cornerstone of the SPG approach employed in 
AGRICORE, there are other widely-known methods that have been applied to similar cases. This 
section includes two distinctive sub-sections that present the necessary knowledge about SPG 
techniques to decide the most suitable one for AGRICORE. Firstly, the following sub-section 
describes useful key concepts of BNs addressed in D2.3. Moreover, some other important 
concepts and methods used in the development of BNs for SPG are explained in detail, such as 
value assignation and evaluation. On the other hand, the second sub-section reviews generic SPG 
techniques useful for the development of the AGRICORE SPG module in the literature, illustrating 
their advantages and disadvantages with the well-known application of household generation. 

3.1 Prior knowledge of BNs 

3.1.1 Bayesian networks overview 

A BN [1] [2] consists of a directed acyclic graph, G, over a collection of vertices (attributes), V, and 
a joint probability distribution, P. This latter is related to G by the Markov condition, which states 
that each attribute is conditionally independent of its non-descendants given its parents. For the 
development of a BN learning algorithm, an essential assumption is causal sufficiency. This means 
that there are no latent (hidden, non-observed) attributes within the observed attributes V and 
all relevant ones are included. 

Regarding the graphical model, some basic concepts must be highlighted in Figure 2. Firstly, 
independent vertices must be highlighted as the only vertices that do not conditionally depend 
on others, such as V1, V2 and V5. On the other hand, we must differentiate between parents and 
children vertices. For example, V3 is a children vertice of the parents vertices V1 and V2 because 
it directly depended on them. In the same line, a children vertice can also be a parent vertice. For 
instance, V3 is the parents vertice for V4 and V6. Finally, two graphical structures can be observed 
in the triplets of a BN. The first one is the v-structure, where the children vertice is called collider 
(for example, the triplet composed by V1, V2 and V3 (collider)). The second structure is the -
structure, where two vertices conditionally depend on one vertice (for example, the triplet of V3, 
V4 and V6). 

For the SPG with BNs, BN learning algorithms that automatically construct (in)dependency 
relationships from observational data are necessary. Among these algorithms, it can be 
distinguished between constraint-based, score-based or hybrid algorithms. For this application, 
hybrid BN learning algorithms have been considered the most suitable ones, selecting the MMHC 
algorithm [3]. This algorithm consists of two phases where, first, the statistically significant links 
between the variables are detected, and then, a scoring approach is used to orient those 
relationships. 

The first phase is carried out by a method called Max-Min Parents and Children (MMPC) 
algorithm. This iterative method first analyses the statically significant associations of an 
attribute of interest with other attributes via statistical tests, stores them and selects the 
strongest association. The second step is to perform conditional independence (CI) tests between 
the attribute of interest and the unselected ones, removing the stored relationships of the 
statically insignificant ones. Moreover, the associations are updated with the minimum value 
between the resulting ones of the first step and the CI tests. Finally, the loop starts again by 
selecting the highest association. After all this process, the end result is a matrix that 
asymmetrically contains the edges (undirected relationships) that were found between each 
attribute. Only if they were identified for both attributes, the observed edges between them 
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would be maintained. Further details of the procedure, including the statistical tests of 
independence, are included in D2.3. 

The second phase of MMHC is the scoring approach with Hill Climbing (HC), where edges are 
converted to arrows or removed in order to maximise a score metric. This latter is a parameter 
of the HC algorithm to be selected among a wide range of metrics. In this case, for working with 
continuous data, the Bayesian Information Criterion (BIC) was selected. Regarding the HC 
procedure, starting with an empty graph with the exclusive constraint of the edges detected in 
the previous phase, a greedy HC search is conducted in the space of BNs [3]. Pursuing the 
maximum score increase, the edges are deleted and re-oriented, always avoiding creating cycles 
in the BN space. This whole process is recursively performed until determining the direction of 
all edges and maximising the scoring metric. The final result is a complete DAG that reflects the 
existing relationships between the attributes based on the input data. 

However, it is a common practice to introduce external knowledge to enhance the resulting DAG 
from executing the MMHC algorithm. This knowledge takes the form of pre-defined directions of 
the association between some attributes. In this case, these relationships are automatically 
extracted from the input data as forbidden directions by the DEM (deliverable D2.2). This prior 
information is included in the scoring phase, enhancing the fit of the BN to the reality to be 
modelled. 

Finally, two techniques are employed to evaluate the resulting DAG. On the one hand, the 
importance of the detected relationships is measured through the reduction in the BIC score 
when a specific arrow is deleted while maintaining the rest of the BN structure. The higher the 
reduction in the score, the higher the indications that this directed relationship is important or 
strong. This allows ordering the relationships based on their strength. On the other hand, the 
bootstrap technique is used to measure the confidence or stability of the discovered 
relationships. To this end, the holdings are sampled with replacements from the observed 
holdings and a BN is learned with the aforementioned methods. This process is repeated 1,000 
times, measuring the proportion of times that the same relationships are discovered.  

3.1.2 Assignation values to attributes 

This sub-section explains in more detail the methods used for the value assignation for attributes 
in SPG. Since there are different types of values and distributions, most of them highly skewed to 
the right and with zero values, random value assignation will lead to an unrealistic SP. For this 
reason, the solution was to design a sophisticated generation method based on non-parametric 
regression that relied on the BN structure learnt using the characteristics of the observed farms. 
As required by the BN, the order of generation is sequential. In other words, each attribute’s 
values depend on the value of its parent attribute(s). For the value assignation, different 
techniques have been considered depending on whether the attribute has parents or not. In the 
case of not having parents, the values are assigned with kernel density estimation (KDE). On the 
contrary, the values of attributes are estimated with the k-NN algorithm. Moreover, a special case 
is the attributes related to climate and soil conditions, whose values are assigned with 1-NN or k-
NN algorithms depending on the resolution of the available datasets. The following sub-sections 
explain the selected techniques. 

3.1.2.1 1-NN algorithm 
In the first approach, the environmental attributes, such as soil pH, temperature, humidity, 
rainfall, and temperature measurements, were matched with the available FADN data using the 
1-NN. Each farm was assigned the set of measurements corresponding to the location closest to 
the farm, with their proximity being computed via the Euclidean metric. Nonetheless, based on 
the same metric, their values could be assigned through a k-NN algorithm if more data were 
available, which provides more accurate values. Thus, using one algorithm or another will depend 
on the data resolution. 
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The spherical coordinates (latitude and longitude) are transformed into Euclidean coordinates. 
The following transformation is applied using the locations of the sample farms  and of 
the locations of the environmental attributes . 

 

Based on both distances, the Euclidean distance between the location of each farm and the 
location of the environmental attributes is calculated. 

 

Finally, the location of the environmental attributes with the smallest Euclidean distance from 
each farm is selected, and their environmental conditions are assigned to that farm. 

3.1.2.2 Kernel density estimate 
Kernel density estimation (KDE) is a well-known technique for estimating a probability density 
function based on a finite sample population [4]. In the AGRICORE project, this technique is used 
for the value assignation of independent attributes, that is, those with no parents. To this end, the 
KDE of the distribution of the non-zero values is computed, and the non-zero values to be 
assigned are generated based on it, with zero values remaining the same. 

Suppose there is an attribute,  taking values , where  denotes the sample size. 
Its KDE is given by 

 

where , where  denotes the sample standard deviation 

and IQR is the interquartile range ( , where and  denote the 25th and the 75th 
quartile of the values, respectively). In simple words, one should compute the above expression 

for every observation . Random number generation from the attribute  that 

has no parents occurs using the following formula 

, where  are random values generated from the standard normal distribution,  is the 
estimated bandwidth and  and  denote the sample mean and variance, respectively, of the 
observed attribute values  and  denotes the values of the synthetic attribute. 

3.1.2.3 k-NN regression and classification 
For attributes with at least one parent, the k-NN algorithm is used to generate values from. Using 

the observed farms, if the attribute is continuous, its estimated value is given by 
, where  denotes the  closest neighbours of, whose proximity is computed via the Euclidean 
distance of the parent attributes. Using the observed attributes, the value of  is chosen towards 

minimising the sum of squares of the errors of the fitted values, . We 
generate values for this attribute based on the selected value of  and the synthetically generated 
values of the parent attribute(s). 
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3.1.3 Evaluation of the synthetic sample generation 

Regardless of whether a synthetic sample or a synthetic population is generated, a thorough 
evaluation process is required to ensure that the population of agents represents the real 
population of interest. To this end, two testing procedures, a parametric one and a non-
parametric one, will be used to assess the fit of univariate distributions to the true distributions. 
Although these methods were introduced and employed in the SS evaluations presented in 
deliverable 2.3, they are further described in the following sub-sections according to their 
application order. After their application, which attribute(s) causes the inconsistency and what 
degree of accuracy could be reached, the -OMP [5] and FBED [6] attribute selection algorithms 
are jointly employed. Furthermore, a principal component analysis (PCA) is applied to reduce the 
dimension of the sample and set visual comparisons. 

3.1.3.1 KDE hypothesis test of equality of two distributions 

In order to test the null hypothesis , where  and  denote the probability 
density function of an attribute of the observed and of the synthetic farms, this non-parametric 

test that makes no assumptions about the functional form of the  is applied. The measure of 

discrepancy between the two  is the integrated squared error , 

where  and  indicate the kernel density estimate of  and  , respectively. The asymptotic 
null distribution of this test statistic is the standard normal N(0, 1), i.e. the normal distribution 
with mean zero and variance one, and hence the asymptotic p-value is computed. 

The test statistic of the energy test of equality of distributions has the following formula 

 

where , for  and  denotes the Euclidean 
norm. 

Specifically for the irrigation system, the size of the economic class, the manager’s gender and 

training, the  test is applied because these attributes take discrete values 

 

where  and  denote the frequency of the k-th possible value of the attribute of the observed 
and of the synthetic farm, respectively and  is the number of possible values of the attribute. 

If  the equality of the distributions of the observed and the synthetic farms is 

rejected. The  denote the 95% quantile of the  distribution with  degrees of 

freedom, and the p-value is computed using this  distribution. 

For either testing procedure, if the p-value is less than 0.05, the  is rejected, and hence the 
distributions cannot be assumed statistically equal. 

3.1.3.2 Energy distance test of equality of two distributions 
The second test of equality is the non-parametric energy distance-based test presented in [7], 
which was also applied to test the equality of the joint distributions of the sample and synthetic 
farms. This test enables studying the equality of the distributions at the multi-attribute levels, 
that is, considering all attributes. Moreover, the process is based on Euclidean distance between 
sample elements and performs particularly well in high dimensions. Indeed, the computational 
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complexity of the algorithm does not depend on the dimension and number of samples. Finally, a 
key feature of the presented testing procedure is that it is multivariate and distribution-free, 
which is not very common among classical approaches. Thus, distributional assumptions are not 
required, increasing its robustness. 

This approach to testing the k-sample hypothesis calculates the  statistic (defined below) based 
on Euclidean distances between sample elements. This statistic is more general than tests based 
on ranks of neighbours in the sense that no assumptions about the continuity of the underlying 
distributions are necessary. Indeed, this testing approach has shown better performance than the 
nearest neighbour test in higher dimensions. 

Suppose there are two samples,  and , composed by the 

elements  and , respectively, where  and  are the 

sample sizes, and  and  are vectors in , with  corresponding to the number of 

attributes. The two-sample test statistic, , is defined as follows: 

 

Let  be fixed, and let  be the constant satisfying , 
where  is the limiting probability for two independent random samples size   and . The 

size  test of  based on  rejects the null hypothesis if . 

3.2 Synthetic population generation 

The task of SPG has attracted research interest in the 21st century, and many suggestions have 
been proposed. The present section conducts a literature review on SPG techniques, spanning 
from 2001 to 2019, emphasising that most papers present generation techniques that focus on 
social characteristics, such as household generation. These techniques can be divided into two 
broad categories, synthetic reconstruction and combinatorial optimisation approaches [8]. 
Moreover, these techniques are illustrated and compared between them with their performance 
in the problem of synthetic household generation [9]. 

Synthetic reconstruction (SR) is perhaps the safest option, as it generates new observations. The 
rationale is to sequentially create observations using the information on some attributes and then 
exploit those generated observations to fill the gaps and generate values for the other attributes. 
This process is continued until the population values are all filled. The cornerstone of this process 
is some true population constraints that must be satisfied in the SP as well. Those constraints are 
usually taken from the available census data but are not the sole constraints. They are, however, 
the only feasible ones, given the accessible information. A standard algorithm for this technique 
is the Iterative Proportional Fitting (IPF) which requires two-way contingency tables, or in more 
technical terms, the joint (bivariate) distribution of two attributes. In the case of more than two 
attributes, IPF considers pairs of attributes conditioning on the values of the other attributes. 

Combinatorial optimisation (CO), on the other hand, uses the publicly available data and samples 
from them (with replacement) until the value of a stress (fit) criterion is minimised. Similarly to 
SR, a list of constraints must also be satisfied (related to the stress criterion), but their difference 
lies in their generated output. SR simulates new values, whereas CO reproduces different 
combinations of the observed values. SR proceeds hierarchically, simulating attributes in a 
specific order, whereas CO uses all attributes in an iterative process. CO starts from a randomly 
chosen set of observations and replaces an observation with a new one if the fit is improved until 
the fit can not be further improved. As the name reveals, this is an optimisation strategy which, 
however, has no guarantees of achieving the optimal solution (the optimal fit). The SR approach 
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is evidently faster and perhaps produces an SP that is more realistic than CO, but the latter can 
yield an SP that better fits some known constraints of the true population. 

The drawback of both approaches though is that the SP is calibrated against some known tabular 
information (a number of cross-tabulated attributes) which in practice may not be representative 
of the characteristics of the true population, e.g. full relationships among the attributes. In this 
project, we are interested in estimating the joint distribution of the attributes, and hence the SR 
approach is to be followed. In the next subsection, the literature on the SR approaches is 
reviewed. 

3.2.1 Synthetic reconstruction approaches 

The SR approach is more popular than the CO, as depicted by the vast literature. [10] generalised 
the IPF algorithm to the Iterative Proportional Updating (IPU) algorithm in order to better 
capture the overall joint distribution of the attributes of the true population. They claim to have 
solved the zero-cell problem, that is, the case of a zero frequency of a household with some 
specific characteristics. They also claim to have solved the zero-marginal problem. For example, 
in some regions, there are no low-income households. The drawback of the minimisation process 
of the IPU is that there is a positive probability that no solution exists. According to [10], IPU will 
fail in extreme cases, such as when all persons of certain types completely fall into a single 
household type. Their solution is to consolidate and aggregate such cells. Further, IPU may reach 
a solution that lies outside the feasible region. In those cases, IPU will iterate until a 
corner/border solution is found. 

[11] proposed an iterative approach to generate statistically realistic populations of households 
matching a few attributes only, type and size of household and age of participants. Their idea can 
be extended to more attributes, but it suffers from the usual disadvantage of the synthetic 
reconstruction approaches; that is, the order to generate the attributes is unknown. The 
advantage is that they consider no sample data, only the tabular information, which on the other 
hand, does not take into account the relationship among the attributes. [12] utilised the IPF 
algorithm in order to generate households controlling for a few characteristics only. [13] was the 
closest work to our case study as they created an SP of poultry farms in the USA. Given the vast 
availability of attributes, they identified the most important factors that influence the siting of 
poultry houses. However, not much technical information is given, but the authors do mention 
many pre-processing steps and the use of a geographical information system (coordinates) as a 
highly important asset. [14] compared the sample-free method of [11] to the IPU algorithm [10] 
in generating individuals and households in France with very few characteristics only and found 
that the differences between the two approaches are very small. 

[15] described a sample-free SPG procedure, again in the context of household generation. [16] 
examined the problem from the game theoretic scope. We consider this approach unfeasible for 
many attributes, which in turn contain more than just two values. Finally, [17] reviewed some 
SPG approaches but focused on papers that were published in a specific journal between 20014 
and 2018. 

On a different route, [18] proposed a hierarchical generation using Markov Chain Monte Carlo 
(MCMC) simulation and, in particular, the Gibbs sampler. Gibbs sampler draws values from an 
attribute conditioning on all other attributes. Respecting the known hierarchy of the 
attributes, [18] carefully generated the values of the attributes of the households. For instance, 
the age and gender of a spouse are generated after the household owner is generated, and their 
kids are generated after. The generation of an attribute conditional of previous attributes takes 
place using a regression model. A multinomial regression is fitted, and the estimated probabilities 
are fed into the multinomial distribution that generates values for the attribute of interest. 
Starting from an attribute, all attribute values are sequentially generated, and the process starts 
over again. According to the MCMC theory, hundreds of thousands, or perhaps millions of values, 
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must be generated, and then only a fraction of them (10%, for instance) is used. The final SP does 
not satisfy some known marginal constraints, and a post-process of the generated data must be 
applied. 
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4 Bayesian networks for SPG 

This section analyses the use of BNs in the literature for the generation of SPs. Although the 
MMHC BN learning algorithm was selected as the most suitable one for SPG in AGRICORE, the 
analysis intends to consider further factors, such as the scalability from sample populations to 
SPs. In addition, it encompasses a more theoretical analysis (presented in this section) and a 
practical one, which consists of the application of MMHC for the use case SPG (described in the 
following section). Finally, it should be highlighted that BNs have been successfully adopted for 
the purpose of SPG [19] but with discrete data, and their application with the FADN continuous 
data is a challenge, requiring appropriate treatment, as stated earlier. 

Along the lines of [20], there lies a rather more promising approach which relies upon Bayesian 
networks (BNs) [21] [19]. BNs have been used by [22] to analyse data extracted from the British 
general household survey. More importantly, [23], [24], and [25] used BNs to generate synthetic 
privacy data, population synthesis and social media profiles data, respectively. Following [21] 
and [19], the use of BNs is proposed because they take into account the conditional distribution 
of some attributes formulating a suitable way to generate an SP. Further, BNs have been 
successfully coupled with ABM models [26] [27]. 

The rationale is to first create a network of the attributes that can be represented via a graph 
where all attributes appear with nodes (vertices) and can either be connected with an arrow 
indicating the direction of their relationship or not connected at all. This yields two advantages 
over the previous SPG approaches: a) it provides information on the joint distribution of all 
attributes, and b) it shows which attributes depend upon which in an ordered fashion. For 
example, one will be able to identify the attributes that affect a given attribute and use this 
information to generate values from that given attribute. The population is then hierarchically 
generated as in the SR approaches (e.g. [20]), but the estimated conditional distributions will be 
more accurate than in the MCMC-based approach of [20]. 

4.1 Advantages and limitations of BNs and SPG framework 

After the study of different SPG techniques, their suitability for the AGRICORE project has been 
checked based on the project’s needs and available data. It can be concluded that BNs could fill 
the gap to obtain a realistic landscape of the population of interest to work with the ABM model 
and obtain feasible results. Despite this, the suitability analysis has reflected a series of 
advantages and limitations of SPG techniques for their application in the project. They are listed 
in this section. 

4.1.1 Advantages 

• Two interrelated advantages of BN learning are the detection of statistically significant 
associations among the attributes and the topological order of the attributes (a tree-like 
structure, see Figure 2 for an example). This feature is very helpful in order to generate values 
(hierarchically) from the attributes. 

• BN learning algorithms are data-driven and agnostic of any theory; hence, the estimated 
parent-child relationship between the attributes might be wrong. In this case, the addition of 
prior knowledge is necessary to avoid these erroneous directions in the relationships of the 
attributes and facilitate the construction of a realistic hierarchical structure. 

• BNs have proved useful for the SPG task. The task requires the specification of the joint 
distribution of the data, and BNs accomplish this [21] [19]. Based on the Markov condition, 
the joint distribution can be written down explicitly, allowing for SPG in sequential order. The 
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generation process commences by generating values for attributes that have no parents. 
These values are used to generate values from their children attributes, and the process 
continues until values for all attributes have been generated. 

• BNs can be adopted by ABMs [26] [27]. 

4.1.2 Limitations 

• BNs cannot handle attributes measured at different levels when the data are heterogeneous 
in the sense that they are measured at different levels of aggregation. For example, data for 
some attributes might exist at the household level, whereas for others, they exist at zip code 
levels, city level, county level and so on. In this case, one should be able to 
reduce/disaggregate the data to a lower level. If most attributes are available at the city level, 
but some are not, for example, the funding is available at a prefecture-level, it could be 
lowered down to the city level by leveraging or eliciting the information from other 
agricultural attributes. 

• In all regression models, if important attributes are missing from the equation, bias is added. 
The same is true for BNs that assume that all relevant attributes have been included. 

• The MMHC, similarly to its competitors, discovers only the linear or monotonic relationships 
among the attributes. 
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5 SPG of farms 

The generation of the synthetic population relies heavily on the corresponding synthetic sample, 
so the generation of a realistic SS according to the actual sample data is essential. Thus, the SPG 
task will be executed similarly to the SSG, whose whole process is illustrated in Figure 4. This 
process starts with the creation of the BN based on the FADN data of the population of interest. 
Using the MMHC algorithm described in Section 3.1.1., the DAG is obtained, and the strength of 
the detected relationships is validated, resulting in the BN capable of generating synthetic agents 
with the characteristics of the real population of interest. The next step is the assignment of the 
attribute’s values which is done attribute by attribute and with an algorithm that depends on 
whether the attribute has parents or not. For attributes with parents, the k-NN algorithm is used, 
whereas, in the case of not having parents, the KDE algorithm is employed. In the flow diagram of 
this second step in Figure 4, a final validation step can be observed. This consists of checking if 
the average value of the synthetic attribute is similar to the mean value calculated from the 
observed farmers in FADN. If any bias is detected, the values of that attribute for all agents are 
assigned again. Finally, once the entire value assignment process finishes, the resulting SS is 
validated. To this end, three strict tests are carried out: i) -OMP and FBED tests, ii) KDE 
hypothesis test for comparing individual attributes distributions, and iii) Energy distance test for 
comparing joint distributions. Thanks to this validation, a realistic SS is obtained. 

 

Figure 4. Synthetic sample generation process. 

On the basis of the generated SS and the census data is possible to scale up to an SP. For that 
purpose, an intermediate step is needed, the calculation of representation weights. These are 
calculated with the exponential empirical likelihood, which is explained in the section below, and 
allow for estimating how many agents of each type are in the real population according to the 
census data. The types of agents are defined for each NUTS2 region and based on its crop(s) and 

livestock. Thus, for a type of agent  whose representation weight is ,  agents, 
where  is the total number of farmers in the real population, must be generated.  To do 
this, several synthetic samples are generated until the number of agents of each type estimated 
by their weights is reached. Lastly, the SP is validated by comparing some parameters with the 
totals included in the census, mainly cultivated area, production and the number of heads of 
livestock. This whole procedure is depicted in Figure 5. 
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Figure 5. Synthetic population generation process. 

5.1 Weights calculation 

The FADN data contain information on the representation weight of each farm; however, when 
used, the results were not accurate. The totals in some attributed exceeded, significantly, the 
known totals of some attributed. For this reason, the representation weights have been estimated 
relying on the total cultivated area of the crops and not on any other attribute of each NUTS-2 
region. The weights were estimated using the exponential empirical likelihood, a.k.a. exponential 
tilting [28] or the empirical likelihood [29] (explained below). The reasoning behind these two 
non-parametric likelihoods is to put some positive weights ( ), which sum to one, on the 
observations such that the weighted sample mean ( ) is equal to some pre-specified population 
mean ( ). The mean, in this case, consists of the mean total cultivated area in each of the crop 
products of each NUTS-2 region. Initially, the mean production was also included, but none of the 
two non-parametric likelihoods converged, and that is why only the land has been retained. 

In the exponential empirical likelihood, the choice of  will minimise the following objective 
function 

 

subject to the constraint defined in [28] 

 

where  denotes the sample size. Thus, with the introduction of the Lagrangian parameters on 
the constraints and after some algebra, the form of the constraint becomes 

 

A numerical search over  is necessary to find the probabilities that will minimise the objective 
function (7) or solve Eq. (9). The drawback with this approach is that there might be no solution 
for Eq. (9), which comes from the fact that  does not lie within the convex hull constructed from 
the data. The empirical likelihood [29] is an alternative method for this case, and the equation to 
be solved is 

 

Empirical likelihood does not solve the convex hull problem, but it rather addresses it in a more 
efficient way. The disadvantage is that the estimated weights are less accurate compared to those 
estimated by the exponential empirical likelihood. 

In the case of agricultural holdings with livestock, the calculation of the weights is different. For 
that, the variables of livestock production must be considered. These variables are gathered in 

the following table, where  with  the number of livestock species considered 
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in the use case. For instance, in the Greek use case, the analysed livestock species are 1: equidae; 
2: bovine; 3: sheep and goats; 4: pigs and poultry; and 5: bees. 

Table 1. Variables of livestock production. 

Variable Description 

Yi.1 Number of animals 

Yi.2 Number of animals sold 

Yi.3 Value of sold animals 

Yi.4 Number of animals for slaughtering 

Yi.5 Value of slaughtered animals 

Yi.6 Number of animals for rearing-breeding 

Yi.7 Value of animals for rearing-breeding 

 

Based on those variables, a set of ratios is calculated: ,  and . 
These are the basis for calculating other ratios: 

,    and  

The weighted livestock is the sum of ,  and . 

5.2 Results of generating a synthetic population for UC# 

The generation of real use case synthetic population allows for verifying the suitability of the 
techniques and procedures described in this deliverable. The main output, in this sense, is the 
calculation of weights. Before their calculation, the FADN representation weights of each farm 
were used to pass from the SS to the SP. The application of those weights led to significant biases, 
exceeding by far the known totals of the real population of interest. On the contrary, the 
representation weights calculated with the equations described before achieve a closer 
adjustment of the SP in terms of the total values of the attributes. Proof of this can be seen in Table 
1, where the ratios of estimated to true totals of cultivated area and production of 14 crops using 
the FADN representation weights and the estimated ones with exponential empirical likelihood 
are presented. The closer these ratios are to 1, the better represented the real population is and 
the better the SP is. Thus, comparing one by one, it can be observed that the majority of the ratios 
resulting from applying the estimated weights are closer to 1 than those calculated with the FADN 
weights. The ratios of Table 1 were calculated for the NUTS2 region of Central Macedonia for 
2018. 

Table 2. Ratios of estimated totals to true totals using the FADN representation weights 
and the estimated weights. 

Attribute Ratio with FADN 
weights 

Ratio with 
estimated weights 

 Attribute Ratio with FADN 
weights 

Ratio with 
estimated weights 

X1.1 2.000 1.027  X8.1 1.448 1.059 

X1.3 2.302 1.009  X8.3 1.922 0.983 

X2.1 2.139 1.011  X9.1 16.978 1.076 

X2.3 1.670 0.977  X10.1 0.985 0.697 

X3.1 3.633 3.726  X10.3 0.954 1.058 

X3.3 1.537 1.183  X11.1 1.446 0.968 

X4.1 1.084 0.951  X11.3 2.788 0.877 
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X4.3 2.011 1.064  X12.1 1.587 1.204 

X5.1 2.397 1.043  X12.3 2.282 1.151 

X5.3 1.996 0.962  X13.1 11.791 0.871 

X6.1 1.972 1.150  X13.3 3.704 2.582 

X6.3 0.902 0.999  X14.1 2.232 1.730 

X7.1 8.488 5.873  X14.3 1.212 1.011 

X7.3 3.073 1.024     

 

Nonetheless, some deficiencies in the initial procedure were detected. Firstly, the evaluation 
cannot be performed with all totals because the totals of some attributes are not available in 
census data. In addition, this would be computationally inefficient because the evaluation and 
adjustment of some attributes do not have a significant impact on the output of the model. 
Secondly, the initial idea of evaluating each attribute during the process of hierarchically 
generating the SP is not feasible, and it is applicable only upon completion of the SPG. The reason 
is that we generate sample FADN data for each NUTS-2 region in order to match the 
characteristics of the synthetic farms to those of the observed farms. To generate the population, 
we simply generate multiple samples until the desired number of farms of each type is reached, 

that is, farms, where  is the total number of farmers in the population and 
 is the calculated representation weight for each type of farm . Finally, the values of some 

attributes are compared with the known totals of these attributes. 
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6 Conclusions 

This deliverable presented the complete Synthetic Population Generation process for simulating 
the AGRICORE use cases and closing the work in WP2. This process is the completion of the SPG 
task that started with the development of the Data Warehouse to store all the necessary datasets 
(D2.1), processing and transformation of those data into useful information by the Data 
Extraction Module (D2.2) and the generation of Bayesian networks from those data by the Data 
Fusion Module (D2.3). On the basis of the algorithms presented in D2.3 to generate 
synthetic samples of anonymised agents, the processes to scale up from those synthetic samples 
to synthetic populations have been proposed. This includes the detailed definition of the 
algorithm already presented in D2.3 and the development of others for that scale-up. Regarding 
the latter, the main contribution has been the representation weights estimation through 
empirical likelihood. 

The results show that the mathematical artefact to estimate the representation weights improves 
the FADN ones, resulting in a more realistic synthetic population. This makes the proposed 
procedure very promising for application in the AGRICORE use cases. The next step is the 
integration of this procedure as a service in the AGRICORE suite to test the generation of complete 
synthetic populations for the 3 use cases contemplated in the project. 
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