
1

D6.2 External Interface Module

Deliverable Number D6.2

Lead Beneficiary IDE

Authors IDENER

Work package WP6

Delivery Date M34

Dissemination Level Public

Ref. Ares(2022)2421033 - 31/03/2022

Table of Contents – 2

AGRICORE – D6.2 External Interface Module

Document Information
Project title Agent-based support tool for the development of agriculture policies

Project acronym AGRICORE

Project call H2020-RUR-04-2018-2019

Grant number 816078

Project duration 1.09.2019-31.8.2023 (48 months)

Version History

Version Description Organization Date

0.1 Deliverable template IDENER 31-jan-2022

0.2 Structure reworking IDENER 25-mar-2022

0.3 Content added IDENER 25-mar-2022

0.4 First content revision IDENER 28-mar-2022

Table of Contents – 3

AGRICORE – D6.2 External Interface Module

Executive Summary
This deliverable reports the advances done in the development of the communications system between
the AGRICORE modules, according to the specifications and technologies proposed in deliverable D6.1.
This document is designed to companion the implementation performed, providing additional
information and clarifications about it. Furthermore, the code generated will be available as an Open
Source project in the official AGRICORE’s repositories for testing and validation.

This document starts with a reminder of the changes that have been made in the AGRICORE architecture
and explains the most critical technology that has taken part in these changes. After that, the test done is
shown with the explanation of the scenario.

Table of Contents – 4

AGRICORE – D6.2 External Interface Module

Abbreviations

Abbreviation Full name

Dapr Distributed Application Runtime

API Application Programming Interface

ABM Agent-Based Modelling

LMM Land Markets Module

RPC Remote Procedure Call

CI/CD Continuous Integration/Continuous Deployment

Table of Contents – 5

AGRICORE – D6.2 External Interface Module

List of Figures
Figure 1 Initial Modular Architecture for AGRICORE .. 8
Figure 2 Revised Modular Architecture for AGRICORE .. 9
Figure 3 Dapr overview .. 10
Figure 4 Dapr sidecar overview .. 11
Figure 5 Communcation architecture using Dapr .. 14
Figure 6 LMM and ABM simplified output .. 18

List of Tables

No table of figures entries found.

Table of Contents – 6

AGRICORE – D6.2 External Interface Module

Table of Contents

1 Introduction ... 7

2 Revised AGRICORE Architecture ... 8
2.1 Initial Architecture... 8
2.2 Revised architecture ... 9

3 Module Interfacing with DAPR ... 10
3.1 Introduction ... 10
3.2 DAPR summation .. 10

4 Communication system implementation ... 12
4.1 Introduction ... 12
4.2 Software development .. 12
4.3 Scenario description .. 12
4.4 Assumptions .. 13
4.5 Environment configuration .. 13
4.6 Demo execution .. 17

5 Conclusions .. 19

Introduction – 7

AGRICORE – D6.2 External Interface Module

1 Introduction

The objective of the present report is to present a prototype implementation of the
communication between modules, based on the revised architecture for AGRICORE as it was
introduced on deliverable D6.1. Specifically, to perform a deep dive on the technologies and
implementation of a substitute to the originally planned External Interface Module, previously
thought to be necessary for the interconnection of the defined modules.

As was briefly discussed in D6.1, the External Interface Module can be replaced with the use of
the Distributed Application Runtime (Dapr), a set of APIs that simplify connectivity between
microservices. To this end, Section 1 - Revised AGRICORE architecture contains a quick summation
of the different architecture versions and the reasons behind this paradigm change. Later, Section
2 - Module Interfacing with Dapr will contain a deep dive on the selected technologies, ranging
from its general description to the specifics of implementation and the solving problems of the
specific AGRICORE scenario.

Revised AGRICORE Architecture – 8

AGRICORE – D6.2 External Interface Module

2 Revised AGRICORE Architecture

The architecture devised for the AGRICORE Project has gone through several revisions during the
development from what was initially presented in the Grant Agreement, especially relating to the
presence and objectives of the External Interface Module. In this Section, a quick summation of
the different versions of the architecture will be performed.

2.1 Initial Architecture

The first version of the AGRICORE modular architecture is depicted in Figure 1, which introduced
the External Interface Module (labeled D.7), with the following description:

• D.7 - External Interface Module, that would serve as a central point to relate the set of
external auxiliary modules (D.8, D.9, and D.10) with the Agent-based Simulation Module
(D.6), but also as a means to facilitate the incorporation of additional external modules by
other researchers.

Figure 1 Initial Modular Architecture for AGRICORE

This version of the architecture doesn’t need any more discussion and is recapped here for
completion’s sake.

Revised AGRICORE Architecture – 9

AGRICORE – D6.2 External Interface Module

2.2 Revised architecture

D6.1 presented a new version of the Agricore architecture, attending to the possible optimization
brought by introducing Dapr into the workflow. In this way, development is simplified, as a whole
module is removed in favour of specific Dapr sidecars for each of the remaining modules that
need communication.

Figure 2 Revised Modular Architecture for AGRICORE

As explained in deliverable D6.1, the External Interface Module is erased from this architecture,
in line with a paradigm shift towards a microservices-based system. In this context, using Dapr
technologies to facilitate communication between microservices is a much more efficient
approach.

Module Interfacing with DAPR – 10

AGRICORE – D6.2 External Interface Module

3 Module Interfacing with DAPR

3.1 Introduction

Deliverable D6.1 already presented in a very concise way the potential benefits of using Dapr in
the AGRICORE project, as well as reasons why it should be adopted. That discussion will not be
repeated here, but to lay the foundations to explain the work performed in the present
deliverable, an introduction to some specific concepts related to Dapr is needed.

3.2 DAPR summation

Its official documentation defines Dapr as “a portable, event-driven runtime that makes it easy
for any developer to build resilient, stateless and stateful applications that run on the cloud and
edge and embraces the diversity of languages and developer frameworks”.

Figure 3 Dapr overview

Dapr consists of several Building Blocks, each of them providing specific functionality for
applications to use, making the deployment highly configurable and encouraging a customizable
approach. At his point in development, two of these blocks are identified as necessary to achieve
the desired implementation of AGRICORE:

• Service-to-service Invocation: Resilient service-to-service invocation enables method calls,
including retries, on remote services, wherever they are located in the supported hosting
environment.

• Publish and subscribe: Publishing events and subscribing to topics between services
enables event-driven architectures to simplify horizontal scalability and make them resilient
to failure. Dapr provides at-least-once message delivery guarantee, message TTL, consumer
groups, and other advanced features.

The Publish and subscribe component will receive the main focus, as it has been identified as a
critical component for achieving the event-driven nature devised for AGRICORE’s modules.

Module Interfacing with DAPR – 11

AGRICORE – D6.2 External Interface Module

Lastly, let’s remember that Dapr uses a sidecar architecture, which exposes an HTTP and gRPC
API, either as a container or as a process alongside the application code, keeping the logic
separated and allowing access from a multitude of runtimes.

Figure 4 Dapr sidecar overview

Communication system implementation – 12

AGRICORE – D6.2 External Interface Module

4 Communication system implementation

4.1 Introduction

In this section, the details of the communication architecture developed will be presented,
alongside a demonstration of the results on a simple scenario, that has the potential of being
extended to cover the necessities of the AGRICORE modules.

4.2 Software development

Before continuing, it is worth noting that the current development has been carried out within
the parameters set for Software Quality Assurance set in deliverable D6.6. GitLab has been used
as the version control tool, and its mechanisms of issues/Merge Requests/Reviews have been
used to ensure a quality development pipeline.

Therefore, all developments presented here are accessible for review and testing at the following
GitLab repository, under the AGRICORE Open Source project:

https://gitlab.com/agricore/agricore-module-communication

The state of development as of this report’s writing is tagged as v1.0.1 and accessible here:

https://gitlab.com/agricore/agricore-module-communication/-/tags/v1.0.1

To take advantage of GitLab’s Continous Integration/Continuous Deployment tools, a CI/CD
Pipeline has also been configured on branch master, which will build the images and upload them
to GitLab’s registry, allowing them to be accessible from other repositories. In the future, this will
be used to point this project to the corresponding development repositories for all the modules,
pull their source code from the registry, and use it to deploy the complete application, eliminating
the need of storing source code on this same repository, keeping in line with software
development’s best practices.

4.3 Scenario description

For this demonstration of the developed infrastructure, the following scenario is considered,
consisting of a possible interaction between the Agent-Based Modelling Simulation (ABM-e) and
the Land Markets Module (LMM), when it comes to performing an auction of lands between the
farmers. The process of execution will be as follows:

1. The ABM-e generates a list of all the farmers/agents interested in buying or selling lands.

2. The ABM-e publishes a message with this information via Dapr

3. The LMM, which is subscribed to that Topic, receives the message

4. The LMM parses the information and resolves the auction process, using its internal logic.

5. The LMM generates a list of the lands that change hands during the auction.

6. The LMM publishes the results of the auction via Dapr

7. The ABM-e receives the message, as it’s subscribed to thisTopic.

8. The ABM-e processes the information and updates its internal data with it.

Thanks to the use of Dapr, the modules can abstract themselves from the details of message
communication, such as networking, message queue management, etc.

https://gitlab.com/agricore/agricore-module-communication
https://gitlab.com/agricore/agricore-module-communication/-/tags/v1.0.1

Communication system implementation – 13

AGRICORE – D6.2 External Interface Module

4.4 Assumptions

For the purposes of this demo, simplified versions of the behaviours and capabilities of the ABM
and LMM modules are presented, Market Modules development is specifically an objective of
WP5, with Tasks 5.2 explicitly focusing on the Land Market Module, while the development of the
ABM Simulation Module is contemplated on WP6, during Task 6.4. Therefore, it’s not the
objective of the current report to dwell more than necessary on these modules’ internal
implementation and functionalities.

This is why, when devising the demo scenario for this implementation, the following assumptions
have been made:

1. The information flow contemplates a single ABM-e module, assuming that the information of
all the agents comes from it. This would not be correct in the real AGRICORE scenario, where
each agent present in the simulation would represent its own ABM-e instance, and, therefore,
perform its own data management.

2. For the LMM, the logic governing the auction resolution has been ignored, as this only
concerns its internal development.

3. Similar to point 2, the processing of auction results by the ABM-e instance has been left blank.

4. For simplicity’s sake, the two modules present in the demo comprise a single Python script
file. In a real scenario, it makes no difference for this system to execute a code composed of
several modules, organized across different folders.

Please take note that, despite this simplification of the modules, the communication architecture
and code devices used for the demo are perfectly valid to be applied to the more complex real
scenario, and these assumptions do not harm in any way the validity or usefulness of the results
presented in this report.

4.5 Environment configuration

As discussed in the previous section, a containerization environment is being used to deploy the
modules and tools, with Docker-Compose as the arbiter. To achieve this, a docker-compose.yml
file is defined, where the definition of each of the images to be built and included in the container
needs to be written, specifying relations between them and other configuration parameters.

Communication system implementation – 14

AGRICORE – D6.2 External Interface Module

Figure 5 Communcation architecture using Dapr

Let’s remember that, as explained in deliverable D6.1, and expanded upon in the previous section
of this report, the architecture to enable a service to access the capabilities of the Dapr building
blocks is to deploy it on a container alongside which a Dapr Sidecar image will be created,
allowing the module to leverage Dapr capabilities by using that module’s programming language
Dapr SDK, which in the case of the developments for this deliverable has been Python. This
schema is represented in the previous figure.

To achieve this, the following configuration in the docker-compose.yml file is used:

Communication system implementation – 15

AGRICORE – D6.2 External Interface Module

Land market module - Python app

 agricore_lmm:

 container_name: agricore_lmm

 # The Docker image is built from local source code

 build: ../image/agricore_lmm

 image: agricore/lmm:0.2

 # LMM - DAPR sidecar

 agricore_lmm_dapr:

 container_name: agricore_lmm_dapr

 image: daprio/daprd:1.6.0

 # The dapr sidecar needs to be tied to its service network

 network_mode: service:agricore_lmm

 # Add dependency to ensure that the related container is already

 # running before starting the sidecar

 depends_on:

 - agricore_lmm

 command:

 - ./daprd

 - '-app-id'

 - agricore_lmm

 - '-app-protocol'

 - 'grpc'

 - '-app-port'

 - '50052'

 - '-components-path'

 - /components

 - '-config'

 - /configuration/agricore-dapr-config.yaml

 # Bind volumes are used to pass the configuration to the container

 volumes:

 - ../dapr/components/:/components

 - ../dapr/configuration/:/configuration

Code Block 1 docker-compose config for LMM + Dapr sidecar

With this code snippet, two elements are defined, the Docker image inside of which the module
will run, which will be built for execution taking the source code, and its corresponding Dapr
sidecar, which uses a precompiled image and will run with the configured parameters to serve
the module.

To build the environment in which the modules will run, a Dockerfile is defined alongside it. This
file will include instructions about how to build and execute this environment and code. For
example, for LMM, the Dockerfile is as follows:

syntax=docker/dockerfile:1

FROM python:3.8-alpine

WORKDIR /src

COPY . .

RUN apk update --no-cache

RUN apk add build-base

RUN apk add linux-headers

RUN pip install --no-cache --upgrade pip setuptools

RUN pip install -r requirements.txt

CMD ["python","lmm.py"]

Code Block 2 LMM Dockerfile

Communication system implementation – 16

AGRICORE – D6.2 External Interface Module

This Dockerfile defines that the module will be built over the base of a Python image from the
official Docker repository. In particular, the 3.8-alpine version has been selected, meaning that
the Python language used will be 3.8, to equal that used to develop the LMM and ABM-e modules,
installed on an Alpine Linux distro, chosen for its light footprint. The following lines involve
installing the minimum needed dependencies for building and running the code. Finally, the last
line indicates how to execute the module.

Alongside the basic Service-to-Service Invocation functionality, the development will be using the
Dapr pub/sub building block, to provide Messaging capabilities across services. To enable this, a
Message broker needs to be added to this deployment. Dapr allows using several different
messaging services, but RabbitMQ has been chosen due to its relative simplicity and lightweight
implementation. Thanks to using Dapr, the messaging broker used is transparent to the modules,
which allows plugging in and out different components if the need arises, without affecting the
source code.

To include the RabbitMQ image, the following code is used in the docker-compose.yml file. Once
again, a precompiled image running on Alpine has been selected.

rabbitmq:

 container_name: agricore_rabbitmq

 hostname: agricore_rabbitmq

 image: rabbitmq:3-management-alpine

Code Block 3 docker-compose Message Broker configuration

To activate the component for use, a configuration file is included in Dapr’s components folder.
The name field assigned here will be used across the code to access the message stream.

apiVersion: dapr.io/v1alpha1

kind: Component

metadata:

 name: agricore_pubsub

 namespace: default

spec:

 type: pubsub.rabbitmq

 version: v1

 metadata:

 - name: host

 value: "amqp://agricore_rabbitmq:5672"

 - name: durable

 value: "false"

 - name: deletedWhenUnused

 value: "false"

 - name: autoAck

 value: "false"

 - name: reconnectWait

 value: "0"

 - name: concurrency

 value: parallel

Code Block 4 Pubsub component configuration

Complete configuration files can be found in the official GitLab repository.

Communication system implementation – 17

AGRICORE – D6.2 External Interface Module

4.6 Demo execution

To execute the presented demo navigate to the “docker” folder of the project structure and
execute the following command, having installed the corresponding Docker dependencies for the
host machine’s Operating System beforehand (i.e. Docker Desktop on Windows systems):

docker-compose up

Code Block 5 Running the project

This will start building the containers, according to the configurations explained in the previous
section. the Python modules are set to perform the information exchange described in the
scenario setup. Using the Python Dapr SDK, the modules can easily access the functionality of the
two Dapr Components configured, service-to-service invocation and messaging via RabbitMQ.

To expose a function from a service to be directly callable by another, the following code is used:

Create and expose invocable method

@app.method(name='getSimulationUpdate')
def getSimulationUpdate(request: InvokeMethodRequest) -> InvokeMethodResponse:

 print(request.metadata, flush=True)

 print(request.text(), flush=True)
 return InvokeMethodResponse(str(status), "text/plain; charset=UTF-8")

Code Block 6 Expose an invocable method

To subscribe to a messaging topic, therefore receiving all messages posted to it by other modules,
the following code is used (note the use of the previously configured pubsub_name):

Message subscription

@app.subscribe(pubsub_name='agricore_pubsub', topic='LAND_AUCTION_RESULTS')

def processAuctionResults(event: v1.Event) -> None:
 auction_data = json.loads(event.Data())

 print(f'ABM received Auction results for', len(auction_data), 'lands that

changed ownership. ', flush=True)
 updateLandData(auction_data)

Code Block 7 Message topic subcription

To publish a message on a given topic, use the following code:

Communication system implementation – 18

AGRICORE – D6.2 External Interface Module

Message publication

def publishAuctionResults(auctionResults):

 with DaprClient() as d:

 resp = d.publish_event(

 pubsub_name='agricore_pubsub',

 topic_name='LAND_AUCTION_RESULTS',

 data=json.dumps(auctionResults),

 data_content_type='application/json'

)

Code Block 8 Message publication

Once the project is deployed, the modules perform the message publication and processing of
results as expected.

Figure 6 LMM and ABM simplified output

Complete source code for this demo can be found in the official GitLab repository

Conclusions – 19

AGRICORE – D6.2 External Interface Module

5 Conclusions

Deliverable D6.1 theorized that utilizing technologies such as Dapr for interfacing microservices
could be a suitable replacement for a dedicated intercommunications module in AGRICORE. After
studying the technologies and implementing a demonstration of the concept, this statement is
believed to be true. Dapr provides a flexible and transparent enough work environment in which
to set the intermodular communication, and the work presented in this report set the foundation
for the deployment of AGRICORE in the future.

However, not everything is automatic in this approach, a minimal knowledge of the framework
and the different SDK needed to leverage Dapr in the multitude of programming languages used
across AGRICORE is needed. The demo performed here is a good starting point, but it needs to be
complemented by offering support to the partners that request it in adopting these technologies.

For preparing this report, the following deliverables have been taken into consideration:

Deliverable
Number

Deliverable Title Lead
beneficiary

Type Dissemination
Level

Due
date

D6.1 AGRICORE architecture and
interfaces

IDE Report Public M23

D6.6 Software Quality Assurance
measures for AGRICORE

AAT Report Public M15

