
1

D6.1 AGRICORE Architecture and Interfaces

Deliverable Number D6.1

Lead Beneficiary IDE

Authors Pablo Báez-González (IDE), Carlos Leyva (IDE), Alejandro
Trujillo (IDE), Juan Carlos Castillo (AAT), Massimo Gioia
(AAT), Mercedes Pichardo (AAT)

Work package WP6

Delivery Date M23* (M18)

Dissemination Level Public

Ref. Ares(2021)4899926 - 31/07/2021

Table of Contents – 2

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Document Information
Project title Agent-based support tool for the development of agriculture policies

Project acronym AGRICORE

Project call H2020-RUR-04-2018-2019

Grant number 816078

Project duration 1.09.2019-31.8.2023 (48 months)

Version History

Version Description Organisation Date

0.1 Deliverable Template IDE 02/02/2021

0.2 Re-structuration of architecture IDE 17/05/2021

0.4 GPU-HPC analysis incorporated IDE 28/05/2021

0.5 Definition of Modules included IDE-AAT 03/06/2021

0.7 Definition of Interfaces included IDE 05/07/2021

0.9 Inclusion of EPICS as Annex IDE 15/07/2021

1.0 Revision, finalisation and exportation IDE 30/07/2021

Table of Contents – 3

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Executive Summary

This deliverable reports the advances done in the definition of the AGRICORE suite architecture
and its interfaces. It provides the most updated information regarding how the whole suite is
built and how each of its elements communicates with the others, this is, the protocols and
communication schemes used. According to this, D6.1 Agricore Architecture and Interfaces is
defined as a live document, which will be updated in parallel with the development work so as
to always reflect the current information regarding the platform design.

Table of Contents – 4

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Abbreviations

Abbreviation Full name

ABM Agent-based Model

ABM-e Agent-based Model simulation Engine

API Application Programming Interface

ARDIT Agricultural Research Data Index Tool

CSS Cascading Style Sheets

DAPR Distributed Application Runtime

DEM Data Extraction Module

DFM Data Fusion Module

GHG Greenhouse effect Gases

gRPC Google Remote Procedure Calls

HDFS Hadoop Distributed File System

HTTP HyperText Transfer Protocol

HTML HyperText Markup Language

IAMs Impact Assessment Modules

JSON JavaScript Object Notation

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

mTLS Mutual TLS authentication

REST Representational state transfer

SPG Synthetic Population Generator

SQL Structured Query Language

YARN Yet Another Resource Negotiator

Table of Contents – 5

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

List of Figures
Figure 1 Initial Modular Architecture designed for the AGRICORE Proposal .. 12
Figure 2 AGRICORE Workflow for Policy Evaluation ... 13
Figure 3 AGRICORE Updated Modular Architecture... 14
Figure 4 AGRICORE decomposition in three individual sub-architectures .. 17
Figure 5 Joint architecture of ARDIT and the DWH .. 18
Figure 6 Comparison of Dapr with service meshes ... 19
Figure 7 Subset of AGRICORE modules that are communicated through DAPR ... 20
Figure 8 Conceptual deployment diagram for container-based modules ... 20
Figure 9 Internal containerisation diagram of each module at microservice-level (ABM Module has been
selected as example) .. 21
Figure 10 Modular approach used in CAPRI .. 22
Figure 11 Module communication traceability matrix .. 37
Figure 12 Memetic EMAS algorithm with classic (left) and hybrid (right) architecture. 49
Figure 13 Simulation time using FLAME for bacterial colonies. .. 50
Figure 14 Runtime of CPU backend by number of cores (left) and comparison of CPU/GPU hardware
(right). .. 51
Figure 15 Simulation times for fixed (left) and variable (right) agents number. ... 52
Figure 16 AG.D1.FR.001. Provide a publicly accessible index of agriculture data sources 59
Figure 17 AG.D1.FR.002. Available for all stakeholders .. 59
Figure 18 AG.D1.FR.003. Store relevant information of the data sources ... 60
Figure 19 AG.D1.FR.004. Researchers will be able to extend its scope with additional data sources 60
Figure 20 AG.D1.FR.005. Semantic search will be allowed .. 61
Figure 21 AG.D2.FR.001. Centralise the information exchange within the AGRICORE IT architecture 61
Figure 22 AG.D2.FR.002. Use a combination of SQL and non-SQL databases massive parallel programming
(MMP) technology and/or Hadoop/Spark.. 61
Figure 23 AG.D2.FR.003. Provide high-performance analysis capabilities to the DWH 62
Figure 24 AG.D2.FR.004. Easy-to-manage access permissions .. 62
Figure 25 AG.D2.FR.005. Separate critical/private information from information suited to be made public
 ... 62
Figure 26 AG.D2.FR.006. Support both private and public cloud infrastructure deployment 63
Figure 27 AG.D3.FR.001. Data of interest extraction .. 63
Figure 28 AG.D3.FR.002. Distribution curves generation .. 63
Figure 29 AG.D3.FR.003. Optimised data extraction operations ... 64
Figure 30 AG.D3.FR.004. Data output stored in DHW .. 64
Figure 31 AG.D4.FR.001. Infer the underlying joint probability distribution by means of statistical
inference methods .. 64
Figure 32 AG.D4.FR.004. Data output stored in DHW .. 65
Figure 33 AG.D5.FR.001. Synthetic Reconstruction method ... 65
Figure 34 AG.D5.FR.002. Match the distribution of the agents' population of interest taking account of the
joint probability distributions .. 65
Figure 35 AG.D5.FR.003. Receives input from the Data fusion module .. 66
Figure 36 AG.D5.FR.004. Data output stored in the DHW .. 66
Figure 37 AG.D6.FR.001. Simulate the evolution of the ABM population .. 66
Figure 38 AG.D6.FR.002. Manage the interactions required with the external modules 67
Figure 39 AG.D6.FR.003. Include the farm ABM model ... 67
Figure 40 AG.D6.NFR.001. Fully object-oriented implementation ... 67
Figure 41 AG.D6.NFR.002. Allow a set of high performance computing features .. 68
Figure 42 AG.D7.FR.001. Land Module Market ... 68
Figure 43 AG.D8.FR.001. Product Markets module ... 69
Figure 44 AG.D9.FR.001. Production Factors Market Module .. 69
Figure 45 AG.D10.FR.001. Compute the main KPIs related to the environmental and climatic impact
assessment for a given set of ABM results .. 69

Table of Contents – 6

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 46 AG.D11.FR.001. Compute the main KPIs related to the socio-economic impact assessment for a
given set of ABM results. .. 70
Figure 47 AG.D12.FR.001. Compute the main KPIs related to the Ecosystem Services impact assessment
for a given set of ABM results. .. 70
Figure 48 AG.D13.FR.001. Provide access to climate models to obtain weather and climatic data 71
Figure 49 AG.D14.FR.001. Enable simulation of a wide variety of agricultural policy instruments 71
Figure 50 AG.D15.FR.001. Provide access to biophysical models to the AGRICORE tool 72
Figure 51 AG.D15.FR.002. Include plant, weather, stress, soil and agriculture management 72
Figure 52 AG.D16.FR.001. Centralise the interaction of the users with the AGRICORE suite 73
Figure 53 AG.D16.FR.001-1. User Access Management .. 73
Figure 54 AG.D16.FR.001-1-2. User Registration .. 74
Figure 55 AG.D16.FR.001-2. Simulation Setup.. 74
Figure 56 AG.D16.FR.001-2. Simulation Setup.. 75
Figure 57 AG.D16.FR.001-2-1. Simulation Setup Page .. 75
Figure 58 AG.D16.FR.001-2-2. Synthetic Population Selection .. 76
Figure 59 AG.D16.FR.001-2-3. Selection of Policies to be included in the simulation...................................... 76
Figure 60 AG.D16.FR.001-2-4. Selection of Simulation Period .. 76
Figure 61 AG.D16.FR.001-2-5. Selection of Solver for the Simulation .. 77
Figure 62 AG.D16.FR.001-2-6. Selection of default KPIs to be computed ... 77
Figure 63 AG.D16.FR.001-3. Simulation Module .. 77
Figure 64 AG.D16.FR.001-4. Visualisation Module ... 78
Figure 65 AG.D16.FR.001-5. Visualisation Module ... 78
Figure 66 AG.D16.FR.001-5-1. Synthetic Population Generator Configurator .. 78
Figure 67 AG.D16.FR.001-5-2. Selection of Datasources for SPG .. 79
Figure 68 AG.D16.FR.001-5-3. Synthetic Population Generator (Down)Loader .. 79
Figure 69 AG.D16.FR.001-6. AGRICORE Suite Main Page ... 79
Figure 70 AG.D16.NFR.001. Developed as a cross-platform desktop application web technologies 80

List of Tables
Table 1 Runtime and strong scalability with 512, 1024 and 2048 nodes in K computer. 52

Table of Contents – 7

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Table of Contents

1 Introduction ... 8

2 AGRICORE Architecture ... 9
2.1 Overall Goal ... 9
2.2 Initial Architecture.. 10
2.3 Updated Architecture .. 14
2.3.1 Global architecture principles.. 15
2.3.2 Modules grouping .. 16
2.3.3 Detailed architectures .. 17

3 AGRICORE Modules ... 22
3.1 Modular Approach .. 22
3.2 Updated List of Modules ... 24
3.3 Module Description .. 24
3.3.1 D1. Agricultural Research Data Index Tool (ARDIT) .. 24
3.3.2 D2. Data Warehouse (DWH) ... 24
3.3.3 D3. Data Extraction Module (DEM) ... 26
3.3.4 D4. Data Fusion Module (DFM) ... 27
3.3.5 D5. Synthetic Population Generator (SPG) .. 27
3.3.6 D6. Agent-based Model Simulation Engine (ABM-e) .. 28
3.3.7 D7, D8, D9 - Multi-Market Modules ... 31
3.3.8 D10, D11, D12 - Impact Assessment Modules .. 32
3.3.9 D13. Climate Model Connectors .. 33
3.3.10 D14. Policy Environment Module ... 33
3.3.11 D15. Biophysical Model Connectors .. 34
3.3.12 D16. AGRICORE Interface Module .. 35

4 Interfaces .. 37
4.1 Introduction ... 37
4.2 Interface Matrix .. 37
4.3 Interface Descriptions ... 38
4.3.1 ARDIT (D1) .. 38
4.3.2 DWH (D2) ↔ DEM (D3) .. 38
4.3.3 DWH (D2) ↔ DFM (D4) ... 38
4.3.4 DWH (D2) ↔ SPG (D5) .. 39
4.3.5 DWH (D2) ↔ ABM-e (D6) .. 39
4.3.6 ABM-e (D6).. 39
4.3.7 Land Market Module (D7) .. 40
4.3.8 Product Markets Module (D8) ... 41
4.3.9 Production Factors Markets Module (D9) ... 42
4.3.10 Environmental/Climate IAM (D10) ... 43
4.3.11 Socio-economic IAM (D11) .. 43
4.3.12 Ecosystem Services IAM (D12) .. 44
4.3.13 Climate Models Connectors (D13) ... 45
4.3.14 Policy Environment Module (D14) .. 45
4.3.15 Biophysical Models Connectors (D15) ... 46
4.3.16 AGRICORE Interface Module (D16) ... 46

5 Development Monitoring ... 47
5.1 Open Source Approach ... 47
5.2 Usage of GitLab ... 47

6 Optimisation of the agent-based simulation approach ... 49
6.1 Current applications of parallel (HPC and/or GPU-based) simulation of agent-based systems 49
6.2 Current suitability for the AGRICORE approach ... 53

7 Conclusions .. 55

8 References .. 56

Annex A: List of Requirements (Gitlab Epics) .. 59

Introduction – 8

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

1 Introduction

The overall objective of this report is to describe the advances done in the AGRICORE Suite
architecture definition from the one provided at the proposal stage. For this purpose, Section 1 -
AGRICORE architecture delves into the overall solution goal and needs of such solution and
provides a summary of the originally defined architecture. Moreover, this section also provides a
high-level description of the updated architecture for the whole solution. Then, Section 2 -
AGRICORE modules, describes the modules the proposed architecture is composed of. After
this, Section 3 - Interfaces, details how these modules communicate across them, providing the
initial specifications regarding protocol, languages and procedures used for such communication.
Next, Section 4 - Development monitoring, delves into the procedures and methodologies defined
for keeping track of the suite and modules development, in order to ensure the quality of the
produced elements as well as their integrability. Then, Section 5 - Optimisation of the agent-based
simulation approach explores the potential adaptation of the simulation approach to GPU or HPC
methodologies to speed up the simulation. Finally, some initial conclusions are provided.

It is important to remark that this deliverable represents the first version of the upgraded
AGRICORE Suite. However, this document has been marked as a living document, which means
that it might get updated within the project execution to reflect any design change (or further
specification) done to the architecture.

AGRICORE Architecture – 9

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

2 AGRICORE Architecture

2.1 Overall Goal

The overall objective of the AGRICORE suite architecture is indeed to provide a software basis to
allow the implementation of its elements, ensuring that the result reaches the expected
functionality. This apparently simple goal is indeed a quite relevant challenge as the functionality
of the proposed solution is quite advanced and thus poses significant technical needs and
requirements. As already introduced in other project documents, the overall goal of the
AGRICORE project - and therefore of the proposed AGRICORE suite - is to develop a new
generation of ABM tool
taking advantage of the latest progress in computational science and ICT (including advances in
big data, artificial intelligence algorithms, mathematical solvers and cloud computing services) as
a means to overcome the challenges that are still hampering their capacity for improving new
policies design and for performing the related socio-economic and environmental assessments at
various geographic scales – from regional to global.

This overarching goal establishes different requirements for the overall solution at different
levels. The proposed solution is quite particular as it is, at the same time, a compute-intensive and
a data-intensive application, depending on the step of its usage workflow we are at each
moment. This means that the proposed architecture should provide those features of compute-
intensive applications (as parallelization, signalling and scheduling of asynchronous tasks,
support long-execution jobs) and at the same time, provide all the features key for data-intensive
applications (although also useful in compute-intensive ones) as scalability, high-performance
and easy maintenance.

Regarding the high-performance computing needs, they are clearly justified by the conceptual
approach followed in the project. Indeed, the overall suite has the ultimate objective of being
capable of simulating the evolution of all farms (> 10 million) in Europe across a given period (e.g.
4 years). Each farm, at the same time, is an autonomous decision-making entity that takes into
account its situation, its surroundings and the environment to decide its next actions. Moreover,
all farms interact with common elements as the product or the land markets. On top of that,
biophysical models are used to predict the growth and the impact of the agricultural management
decisions of the farms. As a result, the number of computations to be made is quite high, especially
when considering the cross-Europe scenario.

Another key need for the AGRICORE architecture is its modularity. Modular design was already
defined in 1985 [1] as a technique of decomposing into modules a software development, with
the goal of reducing its overall implementation cost by allowing modules to be designed and
revised independently. Specific goals of the module decomposition are as follows.

1. Each module's structure should be simple enough to be understood fully.

2. It should be possible to change the implementation of one module without knowledge of the
implementation of other modules and without affecting the behaviour of other modules.

3. The case of making a change in the design should bear a reasonable relationship to the
likelihood of the change being needed. It should be possible to make likely changes without
changing any module interfaces; less likely changes may involve interface changes, but only
for modules that are small and not widely used. Only very unlikely changes should require
changes in the interfaces of widely used modules.

4. It should be possible to make a major software change as a set of independent changes to
individual modules, i.e. except for interface changes, programmers changing the individual

AGRICORE Architecture – 10

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

modules should not need to communicate. If the interfaces of the modules are not revised, it
should be possible to run and test any combination of old and new module versions.

In the AGRICORE suite, the modular design is a must for several reasons. First, the modelling and
evaluation of policy impact on the frame of the Common Agriculture Policy (CAP) is a complex
task combining efforts from several researchers and teams including JRC centres and Universities
across Europe. A key way to promote adoption and ensure the survival of the proposed solution
is to allow researchers to use the elements they find most valuable and enable them to substitute
each of the pieces with new developments that provide advanced features (e.g. implementing new
policy types, considering further aspects as transport targeting Farm To Fork strategies, etc.).
Indeed, as noted in [2] and originally identified in [3] identified the prevailing project-related
funding mechanism as a core reason why models are rarely maintained and extended. Enabling
the partial upgrade and replacement of elements within an overall solution is indeed a way to
promote that, even in a project-related funding scheme, the overall surviving of the previous
developments is maintained.

Moreover, the AGRICORE project promotes the idea of enabling the overall suite to be used in all
types of scenarios, including single nodes, private, public and even hybrid clouds. Indeed, even
the originally proposed architecture made use of the concept of modular microservices
interconnection, with matches a distributed approach for the global AGRICORE suite architecture.
This target to further promote collaboration across different teams but also ensuring that the
simulation of scenarios can be done in reasonable times, even when the computing needs exceed
the capabilities of single-node deployments.

In the next subsection, the original approach for implementing the AGRICORE project results will
be explained, focusing on the proposed architecture approach. After this, an updated description
of the AGRICORE results is provided, delving in more technical details about its implementation.

2.2 Initial Architecture

The AGRICORE tool was conceived from the outset to be a highly modular and customizable
package, released as open-source so that public institutions and academic organizations can
transparently update and improve the tool as new needs arise. The partners designed the IT
architecture depicted in Figure 1 below, where the main modules and their interconnections
were tentatively defined. To ensure modularity, the partners committed to improving this
architecture within the project. The specification of the interfaces between the different modules
and the design and selection of clear ontologies was another point considered fundamental in the
proposal, together with the use of standardized communication protocols to ensure maximum
compatibility.

The modules initially contemplated within the modular architecture of the AGRICORE suite were
the following:

• D.1 - European Data-source Index for Agriculture Policy Assessment, conceived as a
virtual catalogue that allows researchers, policymakers and other stakeholders to both
include and index agricultural data not only at the level of theme or topic addressed but down
to the level of the specific variables, their physical units and the units of analysis to which they
refer.

• D.2 - Data Warehouse (DWH), which is the set of hardware and software elements that
allow managing (load, extract, transform) those data flows that require storage. This includes,
but is not limited to: variables for SPG, intermediate datasets derived from the data extraction
process, definitions of probability distributions, synthetic populations, simulation results, etc.

AGRICORE Architecture – 11

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

• D.3 - Big Data Extraction Module (DEM): The user building the synthetic population must
select, for each of the Attributes of Interest contemplated in the agents' structure, an existing
variable in an accessible dataset to be used to assign random values to each one of the agents'
attributes. The DEM performs the necessary ETL operations to obtain these variables from
the corresponding data sources and assembles them forming one or several aggregated
datasets that are stored in the private part of the user's DWH.

• D.4 - Big Data Fusion Module (DFM), which, from the aggregated datasets obtained by the
DEM and stored in the DWH, detects the possible existence of correlations and dependencies
between attributes/variables and, in any case, obtains the probability distributions
(individual, joint or conditional) of each variable. The formulations of these probability
functions are stored in the DWH for later use during the generation of random values in the
attributes of the agents.

• D.5 - Synthetic Population Generator (SPG), which builds synthetic population by creating
as many agents as specified by the user. This creation is based on using the probability
functions obtained by the DFM to assign values to the attributes of each agent. Once all the
attributes of all the agents have been populated, it is checked that the global probability
distributions (for the whole population) of the attributes of interest in the synthetic
population and in the real population do not differ above a predetermined value. Otherwise,
the attribute assignment is repeated for a number of agents iteratively until the required fit
is achieved.

• D.6 - ABM Simulation Module, whose function is to allow the simulation of the evolution of
the agents on the basis of the agroeconomic management actions they take. These actions,
determined for each agent and each campaign, are the result of an optimization process that
represents the Holding Manager's decision making. Sometimes, these decisions cannot be
fully implemented because they depend on the competitive interaction of some agents with
others through the external market modules. In any case, the effect of these actions and
interactions is reflected in the evolution of the state of each agent, given by the dynamic
equations of the model.

• D.7 - External Interface Module, that would serve as a central point to relate the set of
external auxiliary modules (D.8, D.9 and D.10) with the Agent-based Simulation Module (D.6),
but also as a means to facilitate the incorporation of additional external modules by other
researchers.

• D.8 - Model Interaction Modules considered the interactions of the agents with the rest of
the agricultural structures and the connection with biophysical models both to mimic the
manager's agronomic knowledge and to compute the effect of his decisions on the
productivity of each agricultural enterprise (crop or livestock) within the holding.

• D.9 - Impact Assessment Modules (IAMs) simulate what would be the overall effect of the
decisions taken by the different agents throughout the simulation. For this purpose, the
results of the simulation (sum of actions) are aggregated and passed as arguments to the
external impact assessment modules/models, which compute the effect that these actions
would have i) on the environment (gas emissions, pollution of aquifers, variation in
biodiversity, etc.), ii) on the socio-economic situation of the rural environment (improvement
of the profitability of farms, effect on the labour market, incorporation of young people and
women into the agricultural sector, etc.) and iii) on the capacity of ecosystems to provide
services to humans (support, regulation, cultural, tourism, etc.).

• D.10 - Policy Environment Module allows to incorporate in the simulation of the agents one
or several policy measures whose effect is to be calculated. This is done by transposing each
of the simulated policy instruments by means of structural or parametric modifications to the
objective function governing the optimisation of one or more groups of agents.

AGRICORE Architecture – 12

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

• D.11 - AGRICORE Interface Module is the set of screens, controls and mechanisms for
inputting and loading information. Together, they allow the user to interact with the rest of
the software elements of the AGRICORE suite.

Figure 1 Initial Modular Architecture designed for the AGRICORE Proposal

This architecture aimed to support the original workflow conceived for the application of the
AGRICORE suite for policy impact assessment:

1. Data gathering: Depending on the policy instrument whose impact is to be assessed, it is
necessary to detect and access data that enable the assignation of values to the set of
attributes of interest that make up each of the agents. This information must be statistically
representative of the set of real farm holdings to be synthesised, precisely those that are
affected by the policy measure under study in terms of their typology (technical-economic
orientation), size (economic dimension) and location (geographical and administrative
scope). It is also necessary to obtain all information on the policy measure itself:
requirements to be met by potential beneficiaries (natural or legal persons), requirements to
be met by potential beneficiary farms, articulation of the measure (monetary amounts, the
timing of payments, etc.) and restrictions of the policy programme associated with the
measure (total budget, the maximum number of eligible holdings, etc.).

2. Synthetic Population Generation: Using all the information obtained, an advanced user can
construct the synthetic population of agents that constitutes the simulation subject. While the
DEM, DFM and SPG modules, with their respective graphical interfaces, can assist in the
process, the construction of synthetic populations is, for the time being, a complex procedure
that requires advanced statistical knowledge (Bayesian Networks) and programming skills.

AGRICORE Architecture – 13

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3. Connection with Biophysical Models and Solvers: To enable the execution of the
simulation, communication mechanisms must be in place to allow the agents to interact with
the solver that computes their agro-economic decisions at each simulation step (each
simulated agricultural season). There must also be an interconnection mechanism between
the agents and the biophysical models necessary to simulate the evolution of the different
enterprises.

4. Simulation Set-up: In addition to the above interconnections (solver and biophysical
models), the user must configure the remaining simulation parameters through the
AGRICORE graphical interface. These are the synthetic population to be used, the policy
measure(s) to be tested, the base year of the simulation and its duration in agricultural
campaigns, some KPIs to be computed in a predefined way at the end of the simulation.

5. Simulation execution: Once configured, the simulation is launched via the AGRICORE
graphical interface, from which it is also possible to follow its progress. For internal execution,
the GPU and HPC parallelisation techniques presented in the second to last section of this
deliverable can be used.

6. Calls to IAMs: Those KPIs predefined during the simulation set-up are automatically
calculated by the AGRICORE suite through calls to the corresponding IAMs. Once calculated,
they are automatically displayed in the visualisation module. However, the user can always
operate with the simulation results, conveniently tabulated, and the IAMs to obtain additional
KPIs as needed.

7. Results visualisation and analysis: The different KPI evolution graphs can be visualised
and/or downloaded using the visualisation module. From the analysis of these graphs, the
evaluation of the policy measure under analysis can be extracted and, eventually, iteratively
redesigned until the results predicted by the model meet the objectives that the policy-maker
desires.

Figure 2 AGRICORE Workflow for Policy Evaluation

AGRICORE Architecture – 14

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

2.3 Updated Architecture

During the first stage of the AGRICORE project, the consortium members have been discussing
and iterating across different definitions of all the suite modules, as well as of the workflows to
be applied (both, by the user and internally during the population generation and the agent
simulation processes). As a result of such analyses the architecture initially drafted has
significantly changed and further details on how it should be implemented have been defined. In
order to facilitate the follow up of the changes performed regarding the modules to be
implemented, the next Figure represents the updated architecture in a similar way as it was
presented in the project proposal.

Figure 3 AGRICORE Updated Modular Architecture

The main differences between the two figures (and accordingly with this schematic architecture
representation) are:

• The module previously defined as "European Data-Index for Agriculture Policy Assessment"
has been renamed to "ARDIT - Agricultural Research Data Index Tool". The change does not
affect only the name. Indeed, the expected functionality for this element has been significantly
upgraded, including governance schemes for its future maintenance, the inclusion of ETLs
(Extraction Transformation Load) scripts to the characterised datasets and the possibility to
defined user-private sections.

• Due to the relevance of the developments, every Impact Assessment Module (IAM) is now an
independent element.

• This also applies to the market modules, which are now split between "Land Market Module",
"Product Market Module" and "Production Factors Market Module".

AGRICORE Architecture – 15

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

• The BIOMA connection module has been replaced by a generic Biophysical Model Connector
due to the impossibility to get access to the latest version of BIOMA (source code) and being
unable to establish contact with their developers. Currently, this module aims to enable the
connection to different growth models as STICS, WOFOST, DNDC or ECropS.

• The model defined as External Interface Module, which aimed to standardized the way the
modules communicate between them has disappeared. The explanation for this will be
provided in the next paragraphs when describing in detail the proposed software
architecture.

2.3.1 Global architecture principles

As defined at the beginning of this section, the AGRICORE suite expected functionality established
several requirements for the definition of its architecture, especially at the level of Scalability,
High-performance and Maintainability. Classical ABM-oriented solutions tend to focus on highly
integrated (monolithic) approaches in where most of the implementation is done in the same
place and language, being the common extension just a set of added functions or linked libraries.
However, this approach is difficult to scale up as its implementations rarely include load
distribution mechanisms that enable easily upgrading the processing power or distributing the
processing needs across different nodes. Similarly, these solutions tend to be highly coupled,
using the same languages for all implementations and providing less modularity than desired, as
usually including a new functionality requires modifications not only in the modules affected.

Alternatively, the AGRICORE project proposed a distributed architecture, which clear separation
between the elements composing it by following a truly modular approach. To do so, 6 mandatory
principles have been established, not only for the overall system architecture but also for each
one of the elements forming it: 1) Use SOA as basic architecture reference; 2) Use microservices
and containerisation technologies; 3) Always provide single node deployment scripts; 4) Support
both cloud and on-premise deployment; 5) Don't establish any language requirement to other
modules; and 6) For performance demanding elements, provide ways to tackle performance
limitations in SOA architectures. These principles should be considered when designing and
implementing any combination or a single module. Moreover, these rules should always be
considered in addition to regular Code Quality rules (e.g. Produce proper comments and
documentation, Don't Repeat Yourself, etc.) and the rules defined in the project's Software
Quality Assurance methodology. Each of these additional principles is analysed next:

2.3.1.1 Use SOA as basic architecture reference;
Service Oriente Architecture (SOA) is a style of designing a software solution supporting service
orientation. A service can be considered as a discrete software unit that can be invoked or
accessed by other elements in the same architecture, providing data to the invoked service and
obtaining other information as a result of the requested operation (or a change of state in the
underlying model). According to one of the definitions of SOA [4], a service has four main
properties:

• It logically represents a repeatable business activity with a specified outcome.

• It is self-contained.

• It is a black box for its consumers, meaning the consumer does not have to be aware of the
service's inner workings.

• It may be composed of other services.

If these four properties are compared against the list of specific goals of modular software design
approaches, it can be seen that the mere adoption of a SOA strongly promotes the modularity of

AGRICORE Architecture – 16

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

the solution to be developed. In AGRICORE, SOA will be used for defining each sub-architecture
in order to ensure easy future distribution and full modularity of the AGRICORE suite.

2.3.1.2 Use microservices and containerisation technologies
Microservices can be considered an extension or a variant of the SOA. Indeed, microservices have
been defined [5] as a modern interpretation of service-oriented architectures used to build
distributed software systems. The concept of microservices is a natural evolution of the classical
SOA but aiming for more fine-grained interfaces, smaller services and cloud orientation, to cope
with the need for elasticity while upscaling applications. Indeed, microservices are strongly
linked to DevOps and Continuous Delivery and Deployment [6]. These two software
methodologies or concepts propose software creation procedures that combine software
development with IT operations for a faster software life cycle. When combined with
containerisation technologies (e.g. Docker) and proper development scenario setup, can strongly
facilitate testing and developing activities by enabling both tasks to be run in an environment
almost identical to the production one.

In AGRICORE, microservices, DevOps and containerisation technologies (in this case, docker), will
be integrated across all the developments. This will reinforce the modularity of the solution,
enable a distributed deployment and an easy scale-up of operations.

2.3.1.3 Always provide single node deployment scripts
Although most of the project's development will benefit from distributed scenarios - where
several computing nodes are available - the AGRICORE should be able to be used in a single
computer. This will enable an easier development process but will also benefit the adoption of
the results, allowing researchers to not depend on a complex and powerful set of machines to use
the application.

2.3.1.4 Enable hybrid deployments
On the contrary, all developments should also support fully distributed approaches, either using
public cloud services or private ones. Moreover, a hybrid approach should also be supported, in
which most of the application is deployed in a local private cloud but also public cloud services
are occasionally used for computing-intensive tasks.

2.3.1.5 Don't establish any language requirement to other modules
Following SOA and microservices principles, the different (micro)services being developed
should not be tied to any specific language implementation. This is especially relevant for this
application as several researchers in the Agricultural Policy field are already used to specific
languages and forcing them to adopt new languages or frameworks would strongly hinder the
adoption of the project results.

2.3.1.6 For performance demanding elements, provide ways to tackle performance limitations
in SOA architectures

SOA and microservices are great for distributed applications. However, they pose some
limitations for highly demanding computing tasks (as for instance, the simulation of big
populations in a distributed ABM approach). Accordingly, each one of the individual architectures
defined should provide means for tackling such limitations.

2.3.2 Modules grouping

When analysing the new list of modules to be developed, a logical relation between some of them
has been identified. The next Figure depicts the same services as already presented but split them
into three independent architectures.

AGRICORE Architecture – 17

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 4 AGRICORE decomposition in three individual sub-architectures

In these schemes, modules D1 to D5 have been grouped in a separate architecture which includes
ARDIT, the DWH and the modules related to the generation of populations. Moreover, modules
D6 to D15 have been also grouped in a Simulation architecture while D16 is in a separated one.
However, these three architectures are still connected between them. Indeed, the simulation
architecture will consume information from the Data Gathering and Preparation one by obtaining
(and pouring) data from the DWH. Similarly, the interface module will gather information from
the DWH but will also be used to configure the simulation services and to read its results.

2.3.3 Detailed architectures

 Each one of these architectures has been further defined. These detailed architectures are
described next.

2.3.3.1 Data Gathering and preparation architecture
Data gathering and preparation architecture includes mainly the connection between the ARDIT
and the DWH tools for the storage of potentially useful data sources that feed the synthetic
populations with data. This architecture has been designed to meet the main objectives of the
AGRICORE project in terms of designing fully distributed solutions, which can be used in public
cloud services or private ones, and in addition, adding the possibility to download and install the
tools locally by researchers, on machines with less resources or processing capabilities. In this
way, two approaches to the architecture between ARDIT and the DWH have been designed:

• Global architecture: includes the use of a publicly available version of ARDIT (Global Indexer)
on the web. Users will be able to perform searches on data sources based on multiple
attributes and parameters, new data source characterisations will be stored there and also,
users will be allowed to store them in a DWH exploited in cloud. However, the access and use
of this DWH will be restricted to authorised users only, as it will be use for project purposes.

• Local architecture: this approach allows users to download and install the complete
architecture in private environments in a simple way, enabling researchers, developers and
anyone interested in the project to use and test the tools on their machines. In this case, the
ARDIT indexer will not allow new characterisations to be made and will be limited to simply
loading into the DWH, data sources available on the user's machines. In addition, local
indexers will be able to subscribe to the Global Indexer in order to update their collections of
characterised data sources. In other words, if a new new data source is indexed in the Global
Indexer, users will be able to synchronise their local databases with the global one. So, users
will have that data source available to be loaded into their data warehouses.

AGRICORE Architecture – 18

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 5 Joint architecture of ARDIT and the DWH

2.3.3.2 Simulation Architecture
The Simulation Architecture includes all the modules that are used during the simulation of the
evolution of the population. Due to the agent-based nature of the solution and the complex
decision-making process done by each farmer, this architecture can be safely considered as a high
demand one in terms of computing power. Indeed, running the number of iterations required to
simulate a considerable number of farms poses several constraints to the proposed
SOA(microservice) distributed approach, as all the limitations of such basic architecture are in
conflict with these modules needs. In order to tackle this issue. For instance, the distributed
approach would imply a high number of calls between all the services involved which, even with
a minor latency between services, would surely impact the performance. Accordingly, several
measures need to be put in place to tackle this effect. Among them:

• Each service should always allow the parallel execution of itself. This means that, for instance,
the product market module would need to be able to be called for a single product, for two of
them, or for any set of products to be analysed. It is the responsibility of the service to then
parallelised such requests in a proper way.

• The architecture should provide common ways for regular tasks, avoiding overlapping and
duplication of functionalities. This includes state management, subscribing to events,
chaining services and signalling between them.

• Every module should offer a well-defined interface (as it is common in any service-oriented
scheme). However, in order to maximise performance, this interface should be offered using
a high-performant protocol, as for instance gRPC.

• Services should be easily invokable, avoiding the user needing to deal with service discovery
and name resolution.

• All the services should use a common way to log events or at least to enable the debug and
tracing of the application execution to facilitate development and maintenance tasks.

According to these needs, the AGRICORE development team has analysed several possibilities.
Initially, the approach proposed consisted of the inclusion of a service mesh. A service mesh is a
dedicated layer for easing service-to-service communications. They usually facilitate deployment
and tackle all network-related aspects of distributed deployments, like service discovery and
name resolution. However, this initial approach was not enough as it would require the additional

AGRICORE Architecture – 19

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

elements to provide all the related functionality, as signalling between services, event
subscription, state management, etc. Accordingly, the AGRICORE team evaluated different
possibilities which included the combination of a service mesh with additional solutions and as a
result, DAPR was selected, which is an open-source project led by Microsoft. DAPR (Distributed
Application Runtime) is a portable, event-driven runtime that makes it easy for any developer to
build resilient, stateless and stateful applications that run on the cloud and edge and embraces
the diversity of languages and developer frameworks [7]. The overall comparison between DAPR
and a service mesh is depicted in the next figure:

Figure 6 Comparison of Dapr with service meshes

As it can be seen, DAPR provides some unique features as Service-to-service invocation, state
management, publish and subscribe, resource binding and triggering, secret management and
actors definition. It also provides some overlapping functionality with service mesh as mTLS,
Metrics, Resiliency and Distributed tracing. It doesn't provide traffic routing or splitting but yet,
it support load balancing through mDNS and easy deployment in a docker environment and
public/private hosting infrastructures.

The inclusion of DAPR enables providing almost all the required core functionalities to comply
with the modular approach as well as with the microservice oriented and the distributed
deployment approach. Accordingly, DAPR has been adopted as a core element of the Simulation
architecture.

DAPR works by including a small sidecar container implementation, providing all the runtime
functionality through them. This approach is quite adequate as enables a separate configuration
of the DAPR solution for all the elements and enable each module developer to somehow ignore
its existence and focus on its module implementation. It also facilitates the invocation
(synchronous or asynchronous) of other services and the management of the application status
in a centralised (but yet distributed) way. By adopting DAPR, the Simulation architecture is then
proposed as described in the next figure:

AGRICORE Architecture – 20

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 7 Subset of AGRICORE modules that are communicated through DAPR

As it can be seen, all services (modules) are interconnected (through DAPR)and can consume
each other functionalities. In a global scheme, this architecture can be deployed as depicted in the
next Figure.

Figure 8 Conceptual deployment diagram for container-based modules

Moreover, each one of the modules implemented as a service included in this architecture has a
similar implementation. Each module is composed of a custom service implementation which, as
already mentioned, should expose a gRPC interface, which is connected to a sidecar container for
DAPR integration. The custom service should also be encapsulated in a docker container. The
custom service can be implemented in any language, although its implementation and integration
is easier if it is done in any of the DAPR supported languages (C++, Go, Java, JavaScript,
Python, Rust, .NET and PHP).

AGRICORE Architecture – 21

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 9 Internal containerisation diagram of each module at microservice-level (ABM
Module has been selected as example)

AGRICORE Modules – 22

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3 AGRICORE Modules

3.1 Modular Approach

Modular software is a design approach, which is based on the separation of the software in
different stand-alone modules, allowing them to be developed, tested and maintained
independently. Each module is composed of different functionalities, common or specific, and
different components. In this way, the modular development allows the component re-utilisation,
reusable code, improves efficiency, it is easy to debug, modify and maintain and reduces costs
[8][9][10].

To mention a few disadvantages, having a large number of small modules can affect performance
due to high communication overhead, which might require additional memory and slow down
execution time due to the delay of such communications. In addition, maintainability becomes
more complex due to more interfaces, more documentation generated, etc.

CAPRI is a European Commission project for decision making related to the Common Agricultural
Policy on the basis of quantitative scientific analysis. It uses modular software, consisting of
interconnected modules that provide different types of data, on markets, policies, etc. It also has
another exploitation module consisting of a graphical interface developed in JAVA, where graphs,
maps or tables can be viewed.

Figure 10 Modular approach used in CAPRI

AGRICORE Modules – 23

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Other EU agricultural policy projects using modular development include:

• Fast: the FaST digital service platform will make available capabilities for agriculture,
environment and sustainability to EU farmers, Member State Paying Agencies, farm advisors
and developers of digital solutions.

• BESTMAP: develop a new modelling framework using insights from behavioural theory,
linking existing economic modelling with individual-farm Agent-Based Models.

• Mind Step: European research project aiming to improve the exploitation of available
agricultural and biophysical data and will include the individual decision making (IDM) unit
in policy models.

• iMap: a modelling platform that includes the main partial equilibrium models (AGLINK,
CAPRI, ESIM, AGMEMOD) and general equilibrium models (GLOBE, GTAP) to analyse similar
policy questions with different tools, which allows the comparison of results in order to
substantiate the findings.

AGRICORE Modules – 24

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3.2 Updated List of Modules

3.3 Module Description

3.3.1 D1. Agricultural Research Data Index Tool (ARDIT)

3.3.1.1 Main goal
The main objective of ARDIT is to provide a publicly accessible index of agricultural data sources.
This includes on the one hand the query side, aimed at detecting data sources that include specific
variables with a given geographical scope and spatial/statistical resolution. On the other hand, it
should also allow the user to include new data sources, following a characterisation procedure
that, once completed, allows the registration of the new data source item in the index.

3.3.1.2 Current implementation strategy
ARDIT is a browser-based web application, built using Spring framework for the server-side code
in Java, and Angular framework to build a web client using TypeScript, HTML and CSS. The
server-side code is built under a REST API, hence the separation between the server and client-
side. For communication between both sides, HTTP requests are used to transfer data in JSON
format. In addition, the platform uses PostgreSQL as the database manager, Docker to automate
the deployment of the application in all the different software environments and LDAP
(Lightweight Directory Access Protocol) for the authentication on the platform and for storing
user credentials.

3.3.1.3 Inputs / outputs
• From the ARDIT User Interface: Characterisation of new or edited data sources, following a

tagged and predefined format according to the AGRICORE DCAP 2.0 ontology.

• To the AGRICORE Interface: List of Dataset-Dataset_Variables available to assign values to
each of the attributes of interest of all agents in a synthetic population given a user predefined
spatial, temporal and financial-economic scope.

• To the DWH: The corresponding ETLs for the DWH to be able to obtain the data.

3.3.1.4 Module Requirements
Module D1 Requirements are listed in Annex A.

3.3.2 D2. Data Warehouse (DWH)

3.3.2.1 Main goal
As its name suggests, this module constitutes the centralized point for the storage and exchange
of non-volatile data within AGRICORE's IT architecture. It has a public part, for open data, and a
private part for the storage of data with access restrictions. The DWH has a particularly relevant
role in the process of building synthetic populations, since it constitutes the warehouse for the
raw data of all the datasets that are necessary to fill in the attributes of the agents (and that the
Big Data Extraction Module (D.3) must extract), as well as for the intermediate data derived from
the Big Data Fusion (D.4) process (definitions of the simple and compound probability
distributions, the definition of the Bayesian Network, etc.). Finally, once the synthetic agent
population has been constructed (D.5), its representation in file format is also stored in the DWH.

Additionally, using ETLs scripts provided by the user, the DWH connects to the ARDIT (D.1) to
download and adapt the necessary data from the corresponding data sources.
Simulation results, both intermediate and final, are also stored in the DWH. These results can

AGRICORE Modules – 25

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

come directly from the ABM simulation engine (D.6) or be the result of an additional calculation
in the impact assessment modules (D.9).

Finally, and although not explicitly represented in the Figure (Updated Architecture), the DWH
connects to the AGRICORE graphical interface (D.12) to allow interactive configuration of the
simulation, visualization of the data, and uploading and downloading of intermediate files.

3.3.2.2 Current implementation strategy
The DWH provides distributed data processing using massive parallel programming technologies
such as Hadoop and Spark, combined with a set of Big-Data-based technologies for data ingestion,
processing and storage. The solution proposed for the DWH combines certain tools from the
Hadoop framework, such as the HDFS, YARN or MapReduce, along with Spark, to implement the
distributed storage system. In addition, other technologies have been added such as Hive, which
allows queries in SQL-like format on the data stored in the HDFS, or Sqoop, a tool that allows
external relational databases to be dumped into the distributed system, or vice versa, exporting
data stored in the DWH to external relational databases. Finally, Apache Zeppelin has been added
as the main tool for interacting with the DWH. Zeppelin is a web-based notebook that allows to
launch queries, perform different operations and display data in charts, graphs or plots using a
programming language like Python, Scala or SparkSQL, among others.

3.3.2.3 Inputs / outputs
• From the ARDIT: The addresses (URIs and URLs) that allow the DWH to access and download

(via distribution or data service) the dataset variables selected by the user to assign values to
the attributes of interest. Also, the ETLs stored in the private or public side of the ARDIT.

• To Big Data Extraction Module: the different variables required, encoded and packaged in one
of the formats supported by DEM.

• From DEM/To DFM: A file/stream with the aggregation of the data of all variables, encoded
and packaged in the format supported by the Data Fusion Module.

• From DFM/to SPG: One or several files containing: i) the order in which the values of those
attributes that are correlated should be generated, as well as the list of those that are
completely independent of the others and could be generated individually and in parallel, and
ii) the probability distributions necessary to generate those attributes, encoded as
mathematical formulae or as marginal tables.

• From SPG/to ABM Simulation Module: The file containing the resulting synthetic population
(all agents and their attribute values). This file can be very large, so alternatives for its
generation and fragmented storage should be studied.

• To IAMs: Simulation results, encoded and packaged in the required format, which are passed
as arguments to the corresponding IAM.

• From IAMs: Key Performance Indicators resulting from the execution of the models contained
in each IAM using all or part of the simulation results as input arguments.

• From/to AGRICORE Interface:

3.3.2.4 Module Requirements
Module D2 Requirements are listed in Annex A.

AGRICORE Modules – 26

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3.3.3 D3. Data Extraction Module (DEM)

3.3.3.1 Main goal
This module consists of a set of tools that allow end-users to manage the metadata information
and extract/process data stored in the DWH even if they do not have advanced knowledge of data
engineering. This metadata help users to know what data is stored in the DWH, and what
variables are found in these data files, which are stored in a distributed way in the DWH. For this
purpose, a graphical interface is provided for the visualization of the metadata related to the data
stored in the DWH. Additionally, users are given the possibility to create new datasets from
existing ones in a graphical and intuitive way, without the need to master the native low-level
programming big data processing tools of the DWH. The storage location of the generated
datasets will be determined by the end-user, being possible to store it in the DWH, in the cloud or
in the user's own computer. Some of the operations available through this module are:

1. Parallelly access each of the datasets (they can be stored in the public part of the DWH, or the
private part of the DWH, or even require downloading through a data service).

2. Filter the dataset to select only the fields corresponding to the required variables.

3. Extract the data and if necessary format it for further processing.

4. Aggregate the data from all accessed datasets and store them in another dedicated area in the
private part of the DWH.

These functionalities should be available for variables with different data types: numeric, plain
text, geo-referenced coordinates, etc.

3.3.3.2 Current implementation strategy

DWH contains a large amount of data stored in a distributed manner. Each data comes from a
data source, which has been identified from ARDIT. This module enables to store and visualise all
these metadata that allow to identify the data source with the content that contains it (variables,
time horizon of this data, ...). This metadata will be managed by some tool that could be a database
or even a simple text file and will be updated when a new data source is added to the DWH. This
module will provide a graphical interface that allows the user to visualise all these metadata in
an easy and intuitive way, giving the possibility to create new datasets from the existing ones in
the DWH without the need of having data engineering knowledge. The computational load
required to create these datasets will be supported by the DWH, as this module serves to execute
requests on the DWH in the easiest and most intuitive way.

In terms of the implementation strategy, it is proposed that DEM be a microservice decoupled
from the data warehouse and encapsulated in the form of a container. This microservice should
have three functionalities: 1) update the metadata of the information every time a new data
source is entered in the DWH, 2) display through a graphical interface all the metadata about the
data stored in the DWH, 3) combine the existing data in the DWH using this graphical interface,
without the need to know how the BigData processing tools used in the DWH work.

3.3.3.3 Inputs / outputs
• From DWH: Information about the imported data sources and the variables or other useful

information that they comprise.

• From AGRICORE Interface (maybe via consultation to ARDIT to know which variable within
the selected dataset): List of Dataset-Dataset_Variables selected by the user to cover all the
attributes of interest of the agents.

• To DWH: A file/stream with the aggregation of the data of all variables, encoded and packaged
in the format supported by the Data Fusion Module (.csv).

AGRICORE Modules – 27

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3.3.3.4 Module Requirements
Module D3 Requirements are listed in Annex A.

3.3.4 D4. Data Fusion Module (DFM)

3.3.4.1 Main goal
The objective of this module is to obtain the mathematical artefacts that allow the SPG to generate
the (pseudo)random values that are assigned to each of the agents' attributes. To this end, given
the aggregation of data corresponding to the relevant variables extracted from the DWH by the
DEM, the DFM obtains the probability distributions of each variable. Additionally, it can also
obtain the joint probability distributions (marginal or conditional distributions) of those groups
of variables between which statistical correlation is detected. Both automated parametric and
non-parametric fitting methods (Kernel Density Estimation) are considered for the adjustment
of these distribution functions.

3.3.4.2 Current implementation strategy
At a conceptual level, the strategy that has been defined is the integration of the process of
obtaining probability functions within a broader process that seeks to obtain the Bayesian
Network (BN) of the aggregate of variables. A Bayesian Network is a graphic mechanism
(although translatable into text format) that allows representing a group of variables (through
nodes) and the dependence relationships between them (by means of lines with arrows). Thanks
to this, not only those joint probability distributions to be adjusted are detected, but also the
sequence in which the values of those attributes that show interdependence must be generated
(starting with the ancestor variables and continuing with their descendants). BNs are learned
utilizing the hybrid Forward Early Dropping Hill Climbing (FEDHC) algorithm [11].

At the technical implementation level, the scripts that perform the BN extraction are written in R
language using the pchc package [12].

3.3.4.3 Inputs / outputs
• From DWH: A file/stream with the aggregation of the data of all variables, encoded and

packaged in the format supported by the Data Fusion Module.

• To DWH: One or several files containing: i) the description of the generated Bayesian Network
(in textual format) ii) the order in which the values of those attributes that are correlated
should be generated, as well as the list of those that are completely independent of the others
and could be generated individually and in parallel, and iii) the probability distributions
necessary to generate those attributes, encoded as mathematical formulae or as marginal
tables.

3.3.4.4 Module Requirements
Module D4 Requirements are listed in Annex A.

3.3.5 D5. Synthetic Population Generator (SPG)

3.3.5.1 Main goal
Once the probability distribution functions of all attributes are available, as well as the order in
which they should be generated, the objective of this module is to create the global population of
agents of the requested size with all their assigned attributes, and to make sure that this synthetic
population accurately reflects (with some degree of fit) the real population. The latter is ensured
by using the Synthetic Reconstruction (SR) technique, in which iteratively, the fit of the
probability distribution functions of the attributes of the synthetic population with the
probability distribution functions of the same attributes of the real population is checked; If the

AGRICORE Modules – 28

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

difference is greater than a certain acceptable threshold, a number of agents are 'reconstructed'
(re-generated) (either randomly or those whose attributes are further away from the normal
value of the real population) until the synthetic population is within the acceptable range of fit.

3.3.5.2 Current implementation strategy
At the implementation level, the SPG will be a Python package composed of:

• A main script that generates as many empty agents as the required population size. It will
then create a number of parallel instances of the value assignment script.

• Such a script, taking as argument the attribute generation sequence given by the BN, assigns
in the same order a random value for each attribute based on the probability distribution
(individual, joint, conditional) drawn for it. The set of these distributions is also an input
argument.

• A statistical accuracy check script that calculates the resulting probability distributions in the
synthetic population for each attribute, and compares them with the analogous distributions
in the real population.

• A script that, in case the difference is greater than tolerable according to a pre-set threshold,
selects a set of agents whose attributes will be re-populated. The process is repeated until it
falls below the threshold.

3.3.5.3 Inputs / outputs
• From DWH: One or several files containing: i) the order in which the values of those attributes

that are correlated should be generated, as well as the list of those that are completely
independent of the others and could be generated individually and in parallel, and ii) the
probability distributions necessary to generate those attributes, encoded as mathematical
formulae or as marginal tables.

• From AGRICORE Interface: The required Goodness of Fit for the SP.

• To DWH: The file containing the resulting synthetic population (all agents and their attribute
values). This file can be very large, so alternatives for its generation and fragmented storage
should be studied.

3.3.5.4 Module Requirements
Module D5 Requirements are listed in Annex A.

3.3.6 D6. Agent-based Model Simulation Engine (ABM-e)

3.3.6.1 Main goal
This module will simulate the evolution of the ABM population according to the AGRICORE agent
dynamics previously discussed in this section. The implementation of this module will be fully
object-oriented and the agents will be instantiated according to the synthetic population already
generated in the preceding modules. On runtime, this module will connect to a mathematical
solver in order to perform the iterations needed to simulate the evolution of the agents and it will
also manage the interactions required with the external modules (land, markets, environment,
etc). Given that the simulation of an EU-scale case study would require the computation of a very
large number of agents, this module will allow a set of high-performance computing (HPC)
features, including:

• The exploitation of parallel processing and cloud computing environment capabilities, taking
advantage of the cost-competitiveness of today’s cloud computing services which provides
affordable high computational power.

AGRICORE Modules – 29

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

• The execution in GPU-based (Graphics Processing Units) HPC architectures, which is a
possibility to be explored during the architecture design stage. In fact, while CPUs typically
consists of up to dozens of cores (typical ones currently below 10), the GPU consists of
hundreds of smaller cores which provide a massively parallel architecture and which has
found many applications in computer science problems.

• The use of the latest releases of best rated off-the-shelf mathematical solvers. Attending to
the partners’ experience, the IBM CPLEX MIQCP solver seems the best selection in terms of
performance given the specific characteristics of the problem to be solved. Nevertheless,
other possibilities will be considered as well, such as the GUROBI solver.

• The implementation of warm-start techniques, which consists of optimised calls to the solver
taking advantage of tentative solutions already available from other similar agents. This
measure has been previously tested by data scientists within the IDE and AAT partner teams
in other ABM applications with remarkable success.

3.3.6.2 Current implementation strategy
The ABM simulation engine is formed by the set of agents and the interfaces that communicate
them with the modules they need to run it. Each agent is an instance of the Farm Holding class,
which in turn may contain one or more objects of auxiliary classes (LandPlot, FarmManager,
FarmOwner, CropEnterprise, LivestockEnterprise, etc.).

The methods of each FarmHolding agent will include (method names are tentative):
- campaignPlanning, which constructs the optimisation problem and passes it as an argument in
a solver call.

- campaignSimulation, which simulates a campaign (calculates production and disturbances)
using the actions decided by each agent in the previous method and agro-climatic conditions
obtained through the Climate Model Connector. Outputs are calculated using the connector to
biophysical models and also simulating the interaction among agents through the multi-market
modules.
- postCampaignEvolution, which updates the state of each agent using the actions implemented
and the production/profitability obtained. The evolution of the state of the supra-agent
ecosystem is also simulated. Both make use of the external biophysical models through the
dedicated connector.

3.3.6.3 Inputs / outputs
• From DWH: The file containing the resulting synthetic population (all agents and their

attribute values). This file can be very large, so alternatives for its distributed processing and
fragmented volatile storage should be studied.

• From Policy Environment Module: The list of the instrument(s) and policy measures that the
user wishes to simulate, so that the ABM can translate them and incorporate them by
modifying the objective function of all or some of the agents (alternatively, if the translation
were done by the PEM instead, the ABM-e would directly receive the cost function modified
to include the mathematical transliteration of these measures to be simulated). This input is
received only once, before starting the simulation, as it is actually part of its set-up process.

• From/to Biophysical Models (throughout Biophysical Model Connectors): The ABM-e shall
exchange information with the BM throughout the simulation run. At the beginning of each
simulation step (at the start of each new agricultural season) queries are performed as part
of the optimisation calculations that mimic the decision-making process of each Holding
Manager. At the end of each simulation step, queries are performed as part of the dynamic
state update to compute the effect of the actions taken by the agents on the biophysical
environment (soils, available water, variation of livestock and wildlife, etc.).

AGRICORE Modules – 30

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

• To DWH: The simulation results consist of:

- The state of all agents after each of the simulation steps (value of their attributes in all k).

- The agro management actions taken at each optimisation/control instant.

- The log of operations and/or prices resulting from the auxiliary markets (LM and PM).

- Others (to be delimited).

All of them must be stored at the end of the simulation and as a previous step to the launching
of the visualisation. The results archive can be even larger than the SP archive, so it is even
more important to study alternatives for fragmented storage and processing.

• To IAMs: The IAMs need a part of the simulation results of the agents as input for the
calculation of the KPIs. Specifically, in the intermediate simulation steps, KPIs can be
calculated after each simulated agricultural campaign and dynamically displayed in the
simulation interface.

• From/to Solver(s): The solvers will receive, for each optimisation instant and in the format
they accept, the set-up of the optimisation problem corresponding to each agent (its objective
function, with the updated values of its parameters and the constraints with their limit
values). The solver will return, for each agent, the optimal solution to the optimisation
problem posed, which in turn constitutes the set of agri-management decisions to be applied
to the Holding in the next simulation interval. In the event that many agents of a similar type
have to solve very similar optimisation problems, and after solving each one of them, the
solutions obtained for the previous ones can be added to the optimisation set-up of the
following ones, so that the solver starts searching from them. This technique is known as
warm-start, and it considerably reduces the problem-solving times of each individual agent
and thus the overall simulation time.

• From/to Multi-Market Modules: Throughout the simulation, and at the designated times, the
ABM-e is connected to the multi-market modules to compute the effect of agents'
buying/selling intentions at the overall market level. The process of land exchange (by buying
and selling or renting and leasing) is carried out at the beginning of each simulation step,
before the calls to the solver, so that as soon as they occur, the agent already knows how much
land productive factor he/she has. The call to the product market, on the other hand, occurs
at the end of each simulation step, which is when the biophysical model has returned the
simulated production result corresponding to the combination of agro-management
decisions and bio-climatic conditions.

• To AGRICORE Interface: In all cases, constant communication is maintained to indicate the
status of the simulation (active, completed, error) and the degree of progress (percentage of
the simulation completed and/or estimated time remaining). Additionally, in those cases
where the user requires it, KPIs calculated on the fly can be sent to be displayed by the
graphical visualisation sub-module of the AGRICORE interface.

3.3.6.4 Module Requirements
Module D6 Requirements are listed in Annex A.

AGRICORE Modules – 31

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3.3.7 D7, D8, D9 - Multi-Market Modules

3.3.7.1 Main goal
This set will account for the interactions of the agents with the rest of the agricultural structures,
and will initially include the next modules:

• Land Market, which will model the use and transfer of land resources among agents. In this
module, agents will be able to exchange their land plot (parcel) objects, either permanently
(buy-sell market) or temporarily (lease-rent market).

• Product Market, which will implement a model to simulate the dynamics of production
market prices and will also include additional market dynamics such as manure, fodder, and
young animals.

• Production Factors Markets: This market will model the variations in the price of factors of
production produced by the aggregate effect of the agro-management decisions of all agents
at the national level or above.

3.3.7.2 Current implementation strategy
Land exchange markets will be simulated through zoned double auctions (DA). That is, potential
sellers/landlords, include all available plots of land in a given geographical vicinity in the same
market session, in which all potential buyers/lessors for whom it is profitable (due to their
proximity to the rest of their land) to buy/lease in that area also participate. It remains to be
determined whether these zoned markets will be simulated with continuous double auctions
(CDAs), in which participants continuously update their offers (bids and asks) throughout the
session and transactions occur individually but continuously, or with a succession of discrete
double auctions (DDAs), in which participants update their offers (bids and asks) after each
discrete session, in which several transactions may occur. In any case, each agent will make use
of a dedicated Trading Agent, which is an instance of a Python class that comprises all the non-
native trading functionalities of the agents.

Product Markets will be simulated taking advantage of existing CGE models.
Global/national/regional supply is calculated incorporating the aggregated production of agents
within the ABM-e; non-European (imported) supply and global demand are generated
interpolating from pre-existing forecasts.

3.3.7.3 Inputs / outputs
• From ABM Simulation Engine (throughout Inter Module Communication Module):

o List of participating agents in the Land Markets containing, for each: intention to
buy/sell - land requirements - maximum budget/minimum valuation. This
information (and perhaps some additional information such as the agent's risk
aversion coefficient) will be used by the virtual trading agents (one for each agent)
to update the offers during the session.

o Individual production amounts for all agents and all enterprises (crop derived
products and/or livestock derived products).

o Production factors required by all agents (fertilizers, machinery, combustibles,
etc.).

• To ABM Simulation Engine (throughout Inter Module Communication Module):

o List of land parcels that change ownership for the following campaigns or
permanently, including the transferring agent and the acquiring agent. This list
must also include, for each parcel of land exchanged, the price of the transaction,
so that it can be summed up/deducted from the corresponding agents.

AGRICORE Modules – 32

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

o Averaged campaign prices for each simulated product, considering the
aggregation of supply by all simulated agents but also the external supply
(importations) and the expected aggregated demand.

o Averaged campaign prices for each required productive factor.

3.3.7.4 Module Requirements
The requirements of Modules D7, D8 and D9 are listed in Annex A.

3.3.8 D10, D11, D12 - Impact Assessment Modules

3.3.8.1 Main goal
The objective of IAMs is to translate simulation results into impact effects at various levels of
interest for multi-sided policy analysis. In this sense, IAMs are completely independent modules
of the simulation, and their use is not required in order to carry out the simulation. By contrast,
provided that the result files of a completed simulation are available, IAMs can be run at any time
thereafter.

So far, the following classification has been established for potentially embeddable IAMs:

• D10. Environmental / Climate IAMs, which will compute main KPIs related to the
environmental and climatic impact assessment. This category might include, for example,
GHG emission calculation modules, agricultural water pollution modules, land exhaustion
modules, etc.

• D11. Socio-economic IAMs will assess the relationship between policy instruments and KPIs
related to the integration of agriculture in rural systems. This category might include, for
example, agricultural labour effect modules, modules that compute the effects on specific
socio-demographic strata (young farmers, female farmers), etc.

• D12. Ecosystem services IAMs, which will model and provide ecosystems services KPIs
categorised in four main areas including supporting, provisioning, regulating and cultural
services. This category might include, for example, modules that compute effects of organic
farming on the populations of endangered species, pollination enhancement calculation
modules, modules for the calculation of the increase in agro-tourism etc.

3.3.8.2 Current implementation strategy
The Impact Assessment modules will be composed of Python implementations of existing
theoretical models in the literature, as well as connectors to other models already implemented
as software.

3.3.8.3 Inputs / outputs
• From DWH/ABM Simulation Module: IAMs use suitably formatted simulation results files as

input to produce impact assessment KPIs as output. These results files can be stored in the
private part of the user's DWH, or uploaded as a file directly from local or another cloud by
the user.

• To DWH/AGRICORE Interface: The resulting KPIs can be downloaded as a file for storage in
the DWH or in any other physical location upon request. Additionally, they can also be sent to
the visualisation module of the AGRICORE interface for graphical presentation and/or
advanced processing.

3.3.8.4 Module Requirements
The requirements of Modules D10, D11 and D12 are listed in Annex A.

AGRICORE Modules – 33

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

3.3.9 D13. Climate Model Connectors

3.3.9.1 Main goal
The objective of this module is to enable the use of climate and weather models in the form of
microservices within the AGRICORE suite. Such models can be used, among others, for:

• Generate a trajectory or set of trajectories of annual weather conditions, either for use as
scenarios in stochastic optimisation or for use as conditions for the current simulation
campaign.

• Compute the effect of agents' actions on weather conditions, either to incorporate them
dynamically in long-span simulations (effect of previous simulation steps on current and
future simulation steps) or to compute long-term effects (from the end of the simulation
onwards).

In principle, the climate models to be connected are coupled atmosphere-ocean General
Circulation Models (AOGCMs), such as HadCM3, EdGCM, GFDL CM2.X, ARPEGE-Climat. In these
models, non-agricultural emission projections are left fixed and the contribution of GHG
emissions from agriculture is varied by extrapolating the simulation results.

3.3.9.2 Current implementation strategy
Still to be defined.

3.3.9.3 Inputs / outputs
• From the ABM-e Simulation Module and/or the IAMs: aggregated simulation results and

extracted KPIs by the IAMs to predict the effect of the simulated agricultural activity on the
evolution of the climate in the medium and long term.

• To the ABM-e Simulation Module: probable short- and medium-term (1-12 months) weather
trajectories, so that they can be used as perturbations for the simulation. These trajectories
will possibly include a sequence of expected mean values for temperature, solar radiation,
precipitation and wind speed. These trajectories can also be expressed as an average value
and a confidence interval.

3.3.9.4 Module Requirements
The requirements of Module D13 are listed in Annex A.

3.3.10 D14. Policy Environment Module

3.3.10.1 Main goal
This module, in its POSITIVE configuration, should allow the incorporation of different policy
measures and instruments into the AGRICORE agent simulation. These instruments are
translated and incorporated in the form of modifications to the objective function that mimics the
decision process of each agent. As a result of the simulation, a series of Key Performance
Indicators will be obtained that allow comparing the effect of some measures with that of other
alternative measures.

In its NORMATIVE configuration, and given a set of global constraints for the implementation of
public agricultural policies (e.g. maximum budget, foreseeable available manpower, etc.), this
module should allow, based on ABM simulation, to determine the optimal set of instruments and
measures (and the optimal values of their parameters) to maximize a set of objective KPIs in a
given time period. For this purpose, the set of potentially selectable policy instruments and
measures must be indicated prior to the simulation and included in parameterised form.

For both cases, this module must constitute a catalogue of pre-existing policy instruments (real
measures applied in the past or currently in application). It must also allow the modification of

AGRICORE Modules – 34

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

these instruments (by varying the values of their parameters). Finally, it must allow the user to
create his own fully customized policy from scratch. This module translates the policy schemes
of interest into the AGRICORE simulation environment. To that end, it is connected to the ABM
simulation module (D.6) in order to introduce the necessary modifications of the agents’ model
structures as a previous step to the agents’ instantiation. This basically consists of converting the
policy instrument(s) selected by the user into modifications to be applied to the ABM's objective
function which, introduced in each agent, mimics the decision process of its managers. The nature
of these modifications may vary according to the type of policy instrument, and affect either the
structure of the objective function (e.g. incorporation of additive terms to simulate production
premiums, variation of depreciation coefficients, etc.) or its constraints (e.g. limits to the value of
production variables to simulate production quotas), or a mixture of both.

3.3.10.2 Current implementation strategy
During the simulation set-up process through the AGRICORE graphical interface, the user can
consult a public repository with definitions of policy instruments previously created by other
individual users, or by academic organisations or policy-making institutions. Users will be able to
save a copy of the definition of those policies of interest to them in their own private repositories.
Once in their private repository, they can modify the value of the policies' parameters or leave
them in their original definition. Users can also define their own policy instruments in a
controlled and tagged format (XML/JSON), store them in their private repository and publish
them for inclusion and indexing in the global public repository. Finally, the user can select, for
further translation and incorporation into the simulation, one or more of the existing policy
instruments in his/her private repository.

In order for the module to provide the policy translation service, work is currently underway to
define a format based on tagged language (XML/JSON) to harmonize the formal description of a
wide range of regional, national and even EU public policies.

3.3.10.3 Inputs / outputs
• From the AGRICORE Interface: i) the selection of the configuration type (Positive or

Normative), ii) the selection of configuration set-up (policy instruments and its parameter
values for positive configuration; policy planning constraints and objectives to be achieved
with the chosen policy combo for the normative configuration), iii) new/edited policies
characterisations.

• To the ABM Simulation Module: Updated version of the objective function to be incorporated
in each type of agent, which will be modified according to the combo of policies selected by
the user. Modifications can be in the form of additions to the function, hard constraints added
to the constraint set, or soft constraints that modify the form of the objective function itself.

3.3.10.4 Module Requirements
The requirements of Module D14 are listed in Annex A.

3.3.11 D15. Biophysical Model Connectors

3.3.11.1 Main goal
The aim of the biophysical modelling module is to incorporate into the simulation the biophysical
dynamics of the ecosystem in which the agents being simulated are located. In turn, this objective
is manifested in two other objectives:

- To incorporate into the decision process of holding managers the (limited) knowledge they have
about how their land/herds behave in the face of different combinations of crops and/or applied
production factors. In other words, to integrate how managers predict what the production will

AGRICORE Modules – 35

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

be according to the productive factors they use and how they balance maximising the yield of
their land while avoiding stressing it.

 - Simulate the temporal evolution of the dynamics of the ecosystem, as a result of the aggregate
effect of the decisions of all the holdings located in it (agro-management decisions) and of
external factors (climatic disturbances, pests, etc.).

3.3.11.2 Current implementation strategy
Still to be defined.

3.3.11.3 Inputs / outputs
• From the ABM-e Simulation Module or other modules: Model queries, passing as arguments

the status of the land plot or livestock herd together with a combination of agro management
decisions that would be applied on them.

• To the ABM-e Simulation Module or other modules: The models return the effect of these
decisions on the future state of the land plot/livestock herd as well as the immediate resulting
productivity.

3.3.11.4 Module Requirements
The requirements of Module D15 are listed in Annex A.

3.3.12 D16. AGRICORE Interface Module

3.3.12.1 Main goal
This module will centralise the interaction of the users with the AGRICORE suite, so the
development of future modifications, extensions or even alternative interfaces is facilitated.

The interface shall allow all user types at least the following operations:

- Create a user account and manage password recovery.

- Access the AGRICORE suite using their user credentials.

- Connect to ARDIT to include new characterisations or to perform manual queries.

- Prepare a new simulation by defining in a non-sequential way the 5 necessary elements
(inclusion of a synthetic population, selection of policies to be simulated, selection of the solver
and the biophysical models to which the agents will be connected, selection of KPIs to be
automatically calculated and selection of the period to be simulated).

- Launch the simulation once it has been configured. To be able to observe the progress of the
simulation, pause it or cancel it.

- Launch the visualisation of results directly at the end of a simulation, or by loading a results file
generated in a previous simulation.

Additionally, users should be able to access from the general interface a separate sub-module to
assist them in the process of creating new synthetic populations. However, this process may
include extensive and fully manual data processing actions not based on the use of the graphical
interface, which in practice limits the use of this sub-module to advanced users (with sufficient
statistical, econometric and agronomic expertise).

3.3.12.2 Current implementation strategy
AGRICORE's interface implementation follows a complete process of requirements gathering, the
design of the interface itself, its validation and subsequent development. The AGRICORE interface
will be implemented as a cross-platform desktop application using web technologies, following
best design and usability practices. Electron framework [13]will be used to enable the utilisation

AGRICORE Modules – 36

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

of the same tools, libraries, plugins or components used for website development. Electron
renders web pages, which would normally be displayed in the web browser window, on the
windows and menus of the operative system where it runs. It uses Chromium as a rendering
engine and Node.js for backend side code, so it allows to build the complete application using only
JavaScript, HTML and CSS.

In addition, data visualisation tools, libraries and other tools will be used and combined to display
charts, plots, graphics, maps and geo-referenced information.

3.3.12.3 Inputs / outputs
• From the user: All input data necessary for the operation of the various sub-modules offering

user interface, graphical or console-based.

• To the user: Confirmation or error messages related to the configuration, in graphical or
console text format. Also, output data, displayed in table or graphical format.

3.3.12.4 Module Requirements
The requirements of Module D16 are listed in Annex A.

Interfaces – 37

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4 Interfaces

4.1 Introduction

Generally speaking, "an interface is a boundary where, or across which, two or more parts
interact, so that one system affects or is affected by a design feature of another system" [14].
Speaking specifically about software engineering, "an interface defines the signature operations
of an entity, it also sets the communication boundary between two entities, and generally refers
to an abstraction that an asset provides of itself to the outside" [15]. From a requirements point
of view, whenever the words "interact" or "affect" need to be included in the wording of a
requirement, an interface is involved. Such a requirement is therefore classified as an interface
requirement.

There are many types of interfaces. Some of the most common are mechanical interfaces,
electrical interfaces, electromagnetic compatibility interfaces, organisational interfaces, data
communication interfaces and human-machine interfaces. In the development of the AGRICORE
suite, only the latter two appear, although the definition of organisational interfaces may be
necessary for the maintenance and governance of the tool after the end of the project. The
definition of the human-machine interfaces in AGRICORE corresponds to the requirements of the
graphical user interface of the project, which is being addressed within task T4.2 and will be
embodied in deliverable 'D4.3 - Validated design for the AGRICORE interface (M29)'. The rest of
the data communication interfaces are presented next in this chapter.

4.2 Interface Matrix

The first step in defining interfaces in a multi-modular development is the identification of
interfaces. This first step includes an analysis of the suite and how it relates (interacts) with the
systems that complement it (external interfaces) and an analysis of the modules that make up the
suite and how they interact with each other (internal interfaces). The AGRICORE 'Modules
Communication Matrix' is presented below. The existence of communication in this matrix
implies the existence of an internal interface, although some of them (D8, D13, D15) also indicate
the existence of an external interface with models or systems external to the project.

Figure 11 Module communication traceability matrix

Interfaces – 38

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3 Interface Descriptions

In order to define each pre-identified interface, it is necessary to define the characteristics of each
system at the interface, the media involved in the interaction and the characteristics of what
crosses the interface. When, as in the case of AGRICORE, the different modules are being
developed simultaneously (none of them exists yet), the definition of the interfaces becomes
more complicated. The definition of the interface between the modules will evolve over time as
the design matures. Initially, work is done in the problem space, and the focus is on the "what",
not the "how". In terms of the interaction between the two systems, what information do you
need to define and what can you define so that the design team can design the interface? Once the
design of the modules is complete, the interfaces will be defined in figures, tables and drawings.
Prior to design, these definitions must be documented and controlled somewhere, which is what
is done below.

For some pairs of modules, the envisaged communication between them is presented; for other
modules (those whose microservices will be connected through DAPR) only the services (and the
corresponding API that each module exposes) are presented. It should be stressed that all these
interface definitions belong to the pre-design phase and are therefore completely tentative.

4.3.1 ARDIT (D1)

// The finder of available Datasets to fill agents' Attributes of Interest

service Finder {

 // Detect those datasets that contain information related to a specific

agent's AoI

 rpc FindDatasetsFor (AttributeRequest) returns (ListOfDatasets) {}

// The request message containing the AoI name.

message AttributeRequest{

 string attributeName = 1;

}

// The response message containing the list of (1+) datasets containing at

least one dataset variable that could be used for populating the AoI.

message ListOfDatasets{

 repeated string datasetName = 1 [packed=true];

}

4.3.2 DWH (D2) ↔ DEM (D3)

DWH (D2) will store large amounts of data, many of them with different structures and different
variables. To be able to identify which variable corresponds to which data source, the DEM (D3)
includes a metadata storage tool that allows identifying the data source with the variables in it
(e.g. NoSQL database, text file). This tool provides a graphical interface that enables the user to
execute orders in the DWH (D2) via DEM (D3) without the need for technical knowledge of the
DWH (D2). Thanks to this tool, anyone without data engineering knowledge will be able to
interact with the data warehouse in a simple and intuitive way. However, the set of allowed
operations, which needs to be defined yet, might be restricted.

4.3.3 DWH (D2) ↔ DFM (D4)

DFM (D4) needs the data stored in DWH (D2) to generate the mathematical artifices that drive
the generation of the values to be assigned to each of the agent's attributes during the generation
of synthetic populations. To this end, DFM (D4) will interact with DWH (D2) through the

Interfaces – 39

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

exporting tools provided within the DWH (D2), like Sqoop, Spark or Hive. Once the data has been
imported into DFM (D4), this module would be able to use it to perform operations as needed. The
interaction between the two modules will be detailed in the future, once a common methodology
for importing and exporting data is established.

4.3.4 DWH (D2) ↔ SPG (D5)

SPG (D5) needs the data stored in DWH (D2) to generate the synthetic population. To this end,
SPG (D5) will interact with DWH (D2) using the exporting tools provided within the DWH (D2),
like Sqoop, Spark or Hive. Once the data has been imported into SPG (D5), this module would be
able to use it to perform operations as needed. The interaction between the two modules will be
detailed in the future, once a common methodology for importing and exporting data is
established.

4.3.5 DWH (D2) ↔ ABM-e (D6)

AMB (D6) needs to obtain a Synthetic Population (SP) stored in DWH (D2) to simulate the
proposed scenario. To this end, ABM (D6) will interact with DWH (D2) using the exporting tools
provided within the DWH (D2), like Sqoop, Spark or Hive. Once the data has been imported into
AMB (D6), this module would be able to use it to perform operations as needed. Once the
simulation is finished, the complete results for all agents need to be saved into the DWH. Also,
during the simulation, the ABM might require to save partial results, especially for simulations
involving a large number of agents whose complete results could overflow the RAM. In any case,
the ABM will interact with the DWH using the importing tools provided by the latter. The
interaction between the two modules will be detailed in the future, once a common methodology
for importing and exporting data is established.

4.3.6 ABM-e (D6)

// The simulation status checker service

service AMBstatus{

 // Get status of the simulation at a particular instant, or get its

percentage of completion.

 rpc getStatus () returns (ActualStatus) {}

 rpc getPercentage () returns (ActualPercentage) {}

// The response message containing the current status.

message ActualStatus{

 Status status= 1;

}

// Enum of possible simulation status

enum Status {

 IDLE= 0;

 RUNNING = 1;

 STOPPED= 2;

 FINISHED = 3;

}

// The response message containing the current progress level.

message ActualPercentage{

 int percentage= 1;

}

Interfaces – 40

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.7 Land Market Module (D7)

// The Land Plot Market service definition

service Buyer {

 // Express the intention to buy up to certain aerea of Land

 rpc LandPlotDemand (LandDesire) returns (ActionResult) {}

 // Express the intention to sell up to certain aerea of Land

 rpc LandPlotSupply (PlotOffered) returns (ActionResult) {}

// The message containing the buyer's intentions data.

message LandDesire {

 int32 LandAreaDesired = 1;

 int32 AvailableBudget = 2;

 int32 BuyerLocation = 3;

 int32 minimumYield = 4;

 int32 maximumDistance2BuyerLocation = 5;

}

// The message containing the seller's intentions data.

message PlotOffered {

 int32 PlotAreaOffered = 1;

 int32 privateValuation = 2;

 int32 PlotLocation = 3;

 int32 Yield = 4;

}

// Enum of result

enum ACK{

 OK= 0;

 FAIL= 1;

}

// The response message containing the result of the user's 'shout' (received

and registered or failed)

message ActionResult {

 ACK result = 1;

}

Interfaces – 41

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.8 Product Markets Module (D8)

// The product price predictor service

service MarketProduct{

 // Send a request for the product markets module to estimated the product

price.

 rpc CalculateMarketPrice (AgentsProduction) returns (EstimatedProductPrice)

{}

// The request message containing a list .

message AgentsProduction{

 repeated ProductQuantity productQuantity = 1;

}

// The request message containing the list of produced amounts.

message ProductQuantity {

 string ProductName= 1;

 float Quantity= 2;

}

// The response message containing a list of ProductPrice, with their names and

values.

message EstimatedProductPrice{

 repeated ProductPrice productPrice= 1;

}

// The message containing a product name with the estimated price

message ProductPrice {

 string ProductName= 1;

 float EstimatedPrice= 2;

}

Interfaces – 42

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.9 Production Factors Markets Module (D9)

// The production factors price predictor service

service FactorsMarketProduct{

 // Send a request for the production factors markets module to estimated

the prod. factor price.

 rpc CalculateMarketPrice (AgentsProduction) returns (EstimatedMarketPrice)

{}

 rpc CalculateMarketPrice (AgentsDedicatedLand) returns

(EstimatedMarketPrice) {}

// The request message containing a list of produced quantities from which

required factors can be extrapolated.

message AgentsProduction{

 repeated ProductQuantity productQuantity = 1;

}

// The message containing the list of produced amounts.

message ProductQuantity {

 string ProductName= 1;

 float Quantity= 2;

}

// The request message containing a list of input factors amounts.

message AgentsDedicatedLand{

 repeated LandQuantity landQuantity = 1;

}

// The message containan individual pair input name-input quantity.

message LandQuantity {

 string ProductName= 1;

 float landha= 2;

}

// The message containing a product name with the estimated price

message EstimatedMarketPrice{

 float EstimatedFertilizerPrice= 1;

 float EstimatedRentMachinePrice= 2;

}

Interfaces – 43

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.10 Environmental/Climate IAM (D10)

// The environmental impact assessment service

service EnvironmentalAssesser{

 // Send a request for the IAM to compute the global effect of the

aggregated agronomic actions of the agents.

 rpc CalculateAgriculturalEffect (AgentsInfluence) returns

(EnvironmentalImpact) {}

// The request message containing the list of aggregated values derived from

the sum of agronomic management actions by all simulated agents.

message AgentsInfluence{

 repeated PropertyValue propValue= 1;

}

// The message containing a pair element-value (i.e. fertilizer used in

Andalusia - 10e6 Tonnes)

message PropertyValue {

 string PropertyName= 1;

 float Value= 2;

}

// The message containing the list of predefined KPIs calculated using the

internal models of the IAM.

message EnvironmentalImpact{

 float estimatedGHGEmissionsVariation= 1;

 float estimatedWaterPollutionVariation= 2;

}

4.3.11 Socio-economic IAM (D11)

// The socio-economic impact assessment service

service SocioEconomicAssesser{

 // Send a request for the IAM to compute the global effect of the

aggregated agronomic actions of the agents.

 rpc CalculateAgriculturalEffect (AgentsInfluence) returns

(SocioEconomicImpact) {}

// The request message containing the list of aggregated values derived from

the sum of agronomic management actions by all simulated agents.

message AgentsInfluence{

 repeated PropertyValue propValue= 1;

}

// The message containing a pair element-value (i.e. Area of Olive Groves in

Andalusia in season 2019 - 5e6 ha).

message PropertyValue {

 string PropertyName= 1;

 float Value= 2;

}

// The message containing the list of predefined KPIs calculated using the

internal models of the IAM.

message SocioEconomicImpact{

 float estimatedAWUVariation= 1; // influence in labour (Agricultural

Working Units)

 float estimatedProfitabilityVariation= 2;

}

Interfaces – 44

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.12 Ecosystem Services IAM (D12)

// The ecosystem services impact assessment service

service EcosystemServicesAssesser{

 // Send a request for the IAM to compute the global effect of the

aggregated agronomic actions of the agents.

 rpc CalculateAgriculturalEffect (AgentsInfluence) returns

(EcosystemServicesImpact) {}

// The request message containing the list of aggregated values derived from

the sum of agronomic management actions by all simulated agents.

message AgentsInfluence{

 repeated PropertyValue propValue= 1;

}

// The message containing a pair element-value (i.e. Area of vineyards in

Andalusia in season 2019 - 5e6 ha).

message PropertyValue {

 string PropertyName= 1;

 float Value= 2;

}

// The message containing the list of predefined KPIs calculated using the

internal models of the IAM.

message EcosystemServicesImpact{

 float estimatedTouristicIncomeVariation = 1; // influence in the number of

enologic tourists, for example

 float estimatedVariationOfWildlife = 2;

}

Interfaces – 45

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.13 Climate Models Connectors (D13)

// The weather trajectory predictor

service WeatherForecaster{

 // Send a request for the climate model to generate a probable

trajectory(or trajectories) of the weather that (will) affect a particular

region or specific plot ubication.

 rpc PredictWeather (PlotContext) returns (ForecastWeather) {}

// The request message containing the location of the baricenter of the land

plot, and the base year for which the yearly weather trajectory wants to be

generated.

message PlotContext{

 int32 year= 1;

 Position location= 2;

}

// The message containing the location of the land plot.

message Position{

 float x= 1;

 float y= 2;

 float z= 3;

}

// The response message containing the forecasted weather trajectory compound

by a list of monthly averages.

message ForecastWeather{

 repeated WeatherForecast= 1;

}

// The message containing a single monthly forecast, made of average

Temperature, Rainfall and WindSpeed

message WeatherForecast{

 float avgMonthlyTemperature= 1;

 float avgMonthlyRainFall= 2;

 float avgMonthlyWindSpeed= 3;

}

4.3.14 Policy Environment Module (D14)

// The service that incorporates selected policies into the simulation

service PolicyIncorporator{

 // Send a request for the product markets module to estimated the product

price.

 rpc UpdateOF(PoliciesList) returns (ModifiedOF) {}

// The request message containing a list of policies whose impact want to be

simulated.

message PoliciesList{

 repeated string policies = 1;

}

// The request message containing a list .

message ModifiedOF{

 string of = 1;

}

Interfaces – 46

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

4.3.15 Biophysical Models Connectors (D15)

// The soil evolution service

service SoilUpdater{

 // Send a request for the biophysical model to update the state of the soil

of a land plot.

 rpc UpdateSoil (SoilContext) returns (EvolvedSoilState) {}

 rpc UpdateSoil (SoilState) returns (EvolvedSoilState) {}

// The request message containing the soil identifier and characteristics, and

the agronomic management actions and/or (a)biotic disturbances that affected

it.

message SoilState{

 repeated SoilAttributteValue = 1;

 repeated AGactions = 2;

}

// The request message containing the soil identifier and characteristics, and

the agronomic management actions and/or (a)biotic disturbances that affected

it.

message SoilContext{

 int32 soilType = 1;

 repeated AGactions = 2;

}

// The message containing the list of Agronomic actions.

message AGactions{

 AGOperationType action = 1;

 int32 actionModifier = 2;

}

// Enum of allowed agronomic actions

enum AGOperationType {

 FERTILISATION = 0;

 IRRIGATION = 1;

 SANISATION = 2;

 CROPPING = 3;

}

// The response message containing the evolved soil state after the execution

of the call to the Biophysical Model.

message EvolvedSoilState{

 repeated SoilAttributteValue = 1;

}

// The message containing the list of Agronomic actions.

message SoilAttributteValue {

 string AttributeName = 1;

 string Value= 2;

}

4.3.16 AGRICORE Interface Module (D16)

The definition and functionalities of the different user-interfaces that allow human users to
introduce data, configure and launch simulations, and visualise results will be covered in the
dedicated deliverable 'D4.3 - Validated design for the AGRICORE interface'.

Development Monitoring – 47

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

5 Development Monitoring

5.1 Open Source Approach

The execution of the software development in the AGRICORE project is coordinated so as to
release all the implementations as open-source projects. The selection of this paradigm implies
the need to homogenise the tools and repositories to be used, as well as to facilitate the work to
the individual developments by taking care of the common preparations.

To that end, the following actions have been taken and/or are currently ongoing:

• Selection of GitLab as the open-source development platform for publishing the projects: The
choice was made to use GitLab. GitLab is an open core company that develops software for
the software development lifecycle. It provides an end-to-end open-source software
development platform with built-in version control, issue tracking, code review and more.
GitLab has different plans depending on the team and/or organisation that will use it. It has
been possible to have the Gold package, which GitLab provides free of charge to open source
projects such as AGRICORE, allowing them to use all the features they have in their platform.
The GitLab Gold package covers all the needs of the project while ensuring that the project
makes responsible use of resources and budget.

• Preparation of repository, management of permissions and access control.

• Selection of open-source licenses for publishing AGRICORE tools: This selection is being
carried out as part of the T8.1 task by the different partners involved in the development of
one or several custom modules. To this end, AXIA's guidance has been provided at the various
IPR Workshops, but especially at the second one, which was specifically dedicated to the
protection of software intellectual property.

• Supervision of license compatibility with reused and integrated libraries.

• Coordination with potential external contributors: This task will be carried out in later phases
of the project, once the toolkit is sufficiently mature to allow the incorporation of external
developments into the consortium.

• Definition of procedures for repository maintenance after AGRICORE completion.

5.2 Usage of GitLab

As mentioned before, GitLab was the chosen tool both to monitor the project technical advances
so as to update the architecture and the associated documentation. Once the general AGRICORE
repository was created, as many private projects were initialised as there are modules in the
suite. Additionally, public repositories were created to release, after testing, all the developments
as they are completed.

To manage all these projects jointly, an AGRICORE Group was also created in GitLab. The groups
allow the joint management of permissions for all the projects/repositories included in the global
repository. They also allow the creation and visualisation of all Epics, issues and merge requests,
as well as collaborative management through communication between all members of the group
at the same time. Finally, it is also possible to consult the analytics that show the activity of the
group.

Through the epics and issues definition functionalities, requirements have been defined and
associated with AGRICORE's public GitLab group. According to GitLab, an EPIC is a high-level
technical task that can include other EPICs, as well as low-level technical tasks, which are called

Development Monitoring – 48

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

issues.
- High-level requirements are registered via epics. With these epics, it would be possible to know
the different functionalities required by the different modules of the AGRICORE group, to follow
all related activities and to discuss them.

- Low-level requirements are also defined as epics, but they must be descendants of another epic
(parent epic). In this way, the relationship between requirements of the same topic can be
graphically observed. A low-level requirement can only have one parent.

- Technical tasks, also known as issues, are the set of implementation tasks (one or more)
assigned once a requirement has been analysed, defined and registered, in order to complete the
epic associated with that requirement.

Optimisation of the Agent-Based Simulation Approach – 49

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

6 Optimisation of the Agent-Based Simulation Approach

6.1 Current Applications of Parallel (HPC and/or GPU-based)
Simulation of Agent-Based Systems

Central Processing Unit (CPU) is an essential hardware (HW) device in any computer as it can be
considered the brain. It is composed of several cores optimised in the resolution of sequential
tasks. Although each of these cores is heavyweight, with high clock speeds and latency-optimised,
they are designed to run only one task at a time [16].

On the other hand, Graphics Processing Unit (GPU) is an optional HW device that was initially
aimed to accelerate 3D graphics [17]. As opposed to a CPU, it is composed of thousands of
lightweight cores optimised for dimensional matrix arithmetic and floating-point calculations
[18].

Tasks that rely on linear algebra are well suited for GPUs and can be easily parallelised. This is
the reason why GPUs can be used to solve artificial intelligence (AI) problems [19]. In fact, Nvidia
also released recently RAPIDS, a suite of open-source libraries that integrates with data science
libraries to speed up machine learning (ML) [20].

Piętak et al. [21] analysed the benefits of a hybrid system composed of a CPU (4 cores) and a GPU
(1280 cores) for an evolutionary multi-agent system (EMAS). The objective is to study the
evolution process of a population via reproduction and death operations. In the classic approach,
each of these operations is computed by a single CPU. The new approach introduced, however,
delegates the operations of evaluation and improvement, as well as the most expensive parts of
the computations to the GPU (see Figure 12, extracted from [21]).

Figure 12 Memetic EMAS algorithm with classic (left) and hybrid (right) architecture.

This problem was addressed as a complex discrete system and solved using the low auto-
correlation binary sequences (LABS). The results show that, although the number of steps is much
higher, so is the speed-up obtained. Therefore, the hybrid architecture can generate solutions
faster, and these turn out to be also of higher quality.

Optimisation of the Agent-Based Simulation Approach – 50

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Another biological system was addressed by Konur et al. [22], where they simulated a membrane
system, which aims to mimic the functioning and structure of biological cells and their
computational counterparts, i.e. membranes. The platform used to perform the simulations of
bacterial colonies is called FLAME (Flexible Large scale Agent-based Modelling Environment).
This platform can simulate multi-agent models on parallel hardware architectures, including both
HPCs and GPUs.

The results shown in Figure 13 (extracted from [22]) compare the performance of FLAME when
using it with a pure CPU (only 4 cores) and a GPU (2688 cores). The massive difference in the
number of cores has an essential impact on the time needed for the simulation. For populations
of cells (number of agents) up to 1000, the GPU simulation time is practically constant and lower
than 0.2 seconds, whereas, on a CPU, it increases from 1 to 200 seconds approximately. These
times are relatively stable because the number of agents has not surpassed the GPU cores yet, so
they all can be processed in parallel.

Once the number of agents is above 2000, the simulation times begin to increase due to full
occupancy of the GPU, and some of its cores have to process multiple workloads. It is worth
noticing that CPU FLAME cannot simulate a population of 100000 cells; meanwhile, GPU FLAME
can solve in under 7 seconds. These significant differences in simulation times denote the
improvement introduced by a GPU.

Figure 13 Simulation time using FLAME for bacterial colonies.

Nevertheless, biological systems are not the only systems modelled by agent-based models in the
literature. In [23], Saprykin et al. proposed a data-driven approach to run large-scale agent-based
traffic simulations on heterogeneous hardware. To this end, the authors developed and used
GEMSim (GPU-Enhanced Mobility Simulator), a GPU-accelerated mobility simulator for large-
scale and multi-modal agent-based scenarios. In another work [24], GEMSim was compared with
MATSim (Multi-Agent Transport Simulation) [25], one of the most advanced existing agent-based
simulators for transportation, and highlighted the increase in speed that their software tool can
provide.

GEMSim is written in C++ and uses NVIDIA CUDA [26] to accelerate traffic simulations on GPU.
The operations required are run by hundreds to thousands of GPU threads grouped in warps (32
threads together). Warps are executed in a Single Instruction Multiple Data (SIMD) manner to

Optimisation of the Agent-Based Simulation Approach – 51

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

obtain parallelism. When using CPU hardware, each core processes a chunk of items instead of a
single one as done by a GPU thread.

The results obtained for a scenario composed of 5.5 million agents (which can be classified into
two types) are quite intriguing. On the one hand, the scalability of the CPU backend (with an Intel
Xeon Gold 6150) depending on the number of cores and task size was evaluated (Figure 14 left,
extracted from [24]). The results show that the higher number of cores, the higher performance
can be achieved. However, using more than 20 cores only yields marginal improvements.

Figure 14 Runtime of CPU backend by number of cores (left) and comparison of CPU/GPU
hardware (right).

On the other hand, a comparison of the run time for different hardware configurations is
presented (Figure 14 right, Ibid.). Note that the labels “K40”, “P100”, and “V100” are the only ones
that also account for a GPU (see the publication for further details). Several conclusions can be
extracted from such a comparison:

• “K40” is the configuration that performs the worst given its longevity (released in 2013).

• Almost all modern CPUs have similar performance when it comes to the traffic propagation
part.

• New generations of CPUs result in only marginal performance improvements.

• Each new generation of GPU doubles the run time performance of the traffic propagation
model.

• For the CPU and CPU/GPU that achieved the best performance, the latter runs 3.89 times
faster for the traffic model and 1.87 times for the complete iteration.

Another technique to increase the level of parallelism consists of using High-Performance
Computing (HPC) [27]. This concept is quite simple as it entails connecting several nodes into a
cluster. Each of these nodes is composed, in turn, of several CPUs. Therefore, by aggregating more
and more processors, an increase in performance can be achieved for computationally intensive
tasks. Notice that any desktop CPU presents a minimum of 4 cores nowadays, and high-end CPUs
can have more than 16 cores.

Guo et al. [28] carried out a simple experiment to assess the performance impact of HPC when
using Parallel Agent-Based Simulations (PABS). The system in question is the space target system,
which contains different celestial bodies that move according to orbital kinetics rules. The
implementation was done in Repast HPC [29], a toolkit designed explicitly for PABS, which is
programmed in C++.

Optimisation of the Agent-Based Simulation Approach – 52

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Parallelism was achieved by distributing the different agents into the available cores according
to a rank. Such a rank allows identifying the branch of the program to execute depending on the
agent. The results from Figure 15 (extracted from [28]) show that an increase in the number of
nodes entails a reduction of the simulation time. However, the speed-up that can be obtained is
reduced exponentially, aligning with the same trend previously presented in [23] for a single
processor.

Figure 15 Simulation times for fixed (left) and variable (right) agents number.

Agent-based models have also been utilised to simulate emergency mass evacuations like those
caused due to earthquakes or tsunamis. Wijerathne et al. [30] proposed an ABM with a high-
resolution model of the environment to account for congestion, pedestrian-vehicle interaction, or
fallen debris from damaged buildings. The agents present different behaviours depending on
their condition (e.g. evacuee, volunteer, officials, etc.) and the number of such rises to 10 million.

In order to process such a computationally expensive problem, an HPC extension was developed.
The hardware utilised is a K computer that can contain 2048 computing nodes or, in other words,
16384 CPU cores. Each of these cores is assigned a nearly equal workload, and parallelisation is
achieved via OpenMP’s tasks [31]. The following table encompasses the results obtained.

Number of nodes Execution time (s) Strong scalability (%)

512 3904.0 -

1024 2067.7 94.4

2048 1258.5 82.1

Table 1 Runtime and strong scalability with 512, 1024 and 2048 nodes in K computer.

As it can be observed, the execution time is reduced as more nodes are involved in the
computation. However, such a reduction does not present a linear trend but exponential, which
again aligns with the previous results. Ideally, doubling the number of cores would entail half the
execution time. It is also denoted that the aforementioned results could have a margin of
improvement because the system only uses parallelism for the execution of agents. Other
operations such as migration and dynamic load balancing are executed on single threads.

It is undeniable that including mechanisms of parallelism such as GPU or HPC improve the
performance of agent-based systems. However, when doing so, it is of capital importance to find

Optimisation of the Agent-Based Simulation Approach – 53

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

the point from which the cost of adding more hardware does not translate into a significant
performance improvement to avoid wasting resources. The addition of a GPU is suitable when
the hardware is already available, particularly if the problem can be described with linear algebra
equations. Furthermore, a toolkit to achieve parallelism is provided directly by the manufacturer.
The inclusion of more CPUs into a cluster is generally more expensive, especially if high-end
processors are considered.

6.2 Current Suitability for the AGRICORE Approach

From the literature review presented in the previous section, it can be concluded that there are
multiple methods to achieve parallelism. Rather than straightforwardly applying the same
implementation, each author analysed their problem and presented a solution according to their
needs. Therefore, this section will study the different implementations for the particular case of
the AGRICORE project to determine whether they are suitable or not.

Piętak et al. [21] decided to use a hybrid architecture composed of both a CPU and a GPU. The
GPU was responsible for a series of operations that the agents had to perform, which were the
most computationally expensive. However, this case is relatively simple as there is only one type
of agent, and each of them needs to perform the same operations.

The approach taken by Konur et al. [22] is quite similar. They made use of a GPU in their agent-
based system in which each of the cores represented one agent of the population. The same core
performed all the operations, and the bottleneck takes place once the number of agents exceeds
the GPU cores available.

The previous implementations are particularly suitable when there is low complexity, i.e. there
is only one kind of agent, and they need to perform the same operations. However, should the
complexity of the problem get increased either by different types of agents, their operations or a
combination of both, the aforementioned solutions are no longer viable. New approaches are
needed to distribute the computational load into the multiple cores available (from GPU or HPC).

There are several methods to address agent-based systems that account for more than one type
of agent. In [24], the parallel operations required were run by hundreds or thousands of GPU
threads, depending on their complexity. Such threads were joined together in groups of 32 to
form the so-called warps. This approach can only be given when the hardware available includes
a GPU.

In the case of HPCs, two similar solutions were found to solve the complexity increase of the
system. The first of them consists of assigning one specific rank to every agent. Such a rank defines
the operations the agent needs to perform, and each core can run only agents belonging to a single
rank [28]. On the other hand, Wijerathne et al. [30] developed a slightly different approach.
Instead of assigning a type of agent per core, they computed the execution time of each one of
them. Each core is assigned a nearly equal workload, which is intrinsically related to the
aforementioned execution time.

Attending now to the AGRICORE project, each agricultural producer can be considered a separate
agent. However, they can be grouped up depending on the farming in which they work. For
instance, all olive producers can be regarded as individual agents, but they need to carry out the
same operations to farm olives. This can also be expanded if stock producers were to be
considered.

As it can be observed, the first two approaches discussed in the current section cannot be applied
to the AGRICORE project due to the number of agent types. Furthermore, the implementation is
highly dependent on the architecture to be used, i.e. GPU or HPC. It is essential to highlight that

Optimisation of the Agent-Based Simulation Approach – 54

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

the integration of a GPU is generally more straightforward and less expensive than using high-
end processors with multiple cores.

Should a GPU be used, the approach taken in [24] can also be applied for the AGRICORE project.
Groups of warps are responsible for performing the operations of each agent. The number of
warps and execution time depends on the complexity of such operations. According to the
authors, the improvements brought by brand new hardware generations are more significant for
GPUs than CPUs.

In case GPUs could not be used for whatever reason, and HPC was preferred, parallelisation
benefits can also be achieved. Any of the implementations discussed ([28] and [30]) could also be
applied in the AGRICORE project. However, under the premise of seeking optimisation,
distributing an equal workload between cores is much preferred.

Should an agricultural agent require fewer operations for his farming than another (as permanent
crop farmers compared to livestock farmers), a core might be idle while others are still
computing. This might even entail a waste of resources depending on the number of agent types
(one core per agent is introduced to the system) if their operations are not computationally
expensive. Therefore, should an HPC architecture be used in the AGRICORE project, this last
approach would be ideal for optimal use of resources.

Conclusions – 55

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

7 Conclusions

This document is the first version of the definition of the architecture and interfaces of the
AGRICORE suite. As was done in the introduction, it should be stressed that this is a living
document, which may change as the different modules that make up the structure of the final tool,
which started from scratch at the beginning of the project, are implemented.
Nevertheless, in this first half of the project, the consortium has managed to redefine the
AGRICORE architecture from the initial 11 modules to the current 16 modules presented in this
document. Some of these changes are the consequence of a functional reformulation of some of
the modules; others are the result of a deepening of the modularisation of the design; finally, some
are imposed by the need to build interfaces to make the project independent of the external
modules to which it needs to be connected.

For each module, its main objective and its inputs and outputs have been established. Although
each module has a different level of implementation, practically all of them have their
implementation and encapsulation strategy defined.

As for the interfaces, the task is even more complicated because the final implementation of the
modules that interact with each other is not yet available. However, tentative definitions, coded
using Protocol Buffers, of such interfaces as gRPCs have been presented in the document.
Also specified in this document are the completed and ongoing activities aimed at ensuring the
open-source nature of the AGRICORE project, as well as the procedures implemented, using
GitLab, for the collaborative development of the software within the Consortium.
Finally, a brief exploratory analysis is included on how the parallelisation and power capabilities
offered by GPUs and HPCs can be used to ensure that the future final version of the AGRICORE
tool can be up-scaled while maintaining minimum performance and speed requirements.

References – 56

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

8 References

[1] ^D. L. Parnas, P. C. Clements, and D. M. Weiss, “The Modular Structure of Complex
Systems,” IEEE Transactions on Software Engineering, vol. SE-11, no. 3, pp. 259–266,
1985, doi: 10.1109/TSE.1985.232209.

[2] ^W. Britz et al., “A design for a generic and modular bio-economic farm model,”
Agricultural Systems, vol. 191, p. 103133, 2021, doi:
https://doi.org/10.1016/j.agsy.2021.103133.

[3] ^P. Reidsma, S. Janssen, J. Jansen, and Martin K. van Ittersum, “On the development and
use of farm models for policy impact assessment in the European Union – A review,”
Agricultural Systems, vol. 159, pp. 111–125, 2018, doi:
https://doi.org/10.1016/j.agsy.2017.10.012.

[4] ^The Open Group Website. [Online]. Available: http://www.opengroup.org/

[5] ^N. Dragoni et al., Microservices: yesterday, today, and tomorrow. 2017.

[6] ^A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture,” IEEE Software, vol. 33, no. 3, pp. 42–
52, 2016, doi: 10.1109/MS.2016.64.

[7] ^DAPR, Introduction to the Distributed Application Runtime. [Online]. Available:
https://docs.dapr.io/concepts/overview/

[8] ^H. Sun, W. Ha, P.-L. Teh, and J. Huang, “A Case Study on Implementing Modularity in
Software Development,” Journal of Computer Information Systems, Jul. 2015, doi:
10.1080/08874417.2016.1183430.

[9] ^K. Sullivan, W. Griswold, Y. Cai, and B. Hallen, “The Structure and Value of Modularity in
Software Design,” ACM SIGSOFT Software Engineering Notes, vol. 26, Aug. 2001, doi:
10.1145/503271.503224.

[10] ^M. Kaszubowski, The benefits of modular software design. 2020. [Online]. Available:
https://mkaszubowski.com/2020/06/02/modular-software-design-benefits.html

[11] ^M. Tsagris, The FEDHC Bayesian network learning algorithm. 2021.

[12] ^The PCHC and PCTABU Bayesian network learning algorithms in pchc. [Online].
Available: https://rdrr.io/cran/pchc/man/pchc.html

[13] ^Electron Build cross-platform desktop apps with JavaScript, HTML, and CSS. [Online].
Available: https://www.electronjs.org/

[14] ^Best Practice Software Engineering - Interface. [Online]. Available: http://best-
practice-software-engineering.ifs.tuwien.ac.at/patterns/interface.html

[15] ^L. S. Wheatcraft, “9.2.2 Everything you wanted to know about interfaces, but were
afraid to ask,” INCOSE International Symposium, vol. 20, no. 1, pp. 1132–1149, Jul. 2010,
doi: 10.1002/j.2334-5837.2010.tb01130.x.

[16] ^Levinas, Mantas, GPU vs CPU: What Are The Key Differences? — Cherry Servers. 2020.
[Online]. Available: https://blog.cherryservers.com/gpu-vs-cpu-what-are-the-key-
differences

[17] ^What is a GPU? — Intel. [Online]. Available:
https://www.intel.la/content/www/xl/es/products/docs/processors/what-is-a-
gpu.html

References – 57

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

[18] ^Caulfield, Brian, What’s the difference between a CPU and a GPU? — NVIDIA. 2009.
[Online]. Available: https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-
between-a-cpu-and-a-gpu/

[19] ^Shabarok, German, Why deep learning uses GPUs? — Towards Data Science. 2020.
[Online]. Available: https://towardsdatascience.com/why-deep-learning-uses-gpus-
c61b399e93a0

[20] ^NVIDIA Introduces RAPIDS Open-Source GPU-Acceleration Platform for Large-Scale
Data Analytics and Machine Learning — NVIDIA NEWSROOM. 2018. [Online]. Available:
https://nvidianews.nvidia.com/news/nvidia-introduces-rapids-open-source-gpu-
acceleration-platform-for-large-scale-data-analytics-and-machine-learning

[21] ^1 2 3 K. Piętak, D. Żurek, M. Pietroń, A. Dymara, and M. Kisiel-Dorohinicki, “Striving for
performance of discrete optimisation via memetic agent-based systems in a hybrid
CPU/GPU environment,” Journal of Computational Science, vol. 31, pp. 151–162, 2019,
doi: https://doi.org/10.1016/j.jocs.2019.01.007.

[22] ^1 2 3 S. Konur, M. Kiran, M. Gheorghe, M. Burkitt, and F. Ipate, “Agent-Based High-
Performance Simulation of Biological Systems on the GPU,” in 2015 IEEE 17th
International Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, 2015, pp. 84–89. doi:
10.1109/HPCC-CSS-ICESS.2015.253.

[23] ^1 2 A. Saprykin, N. Chokani, and R. S. Abhari, “A data-driven approach to run agent-based
multi-modal traffic simulations on heterogeneous CPU-GPU hardware,” Procedia
Computer Science, vol. 184, pp. 720–727, 2021, doi:
https://doi.org/10.1016/j.procs.2021.04.021.

[24] ^1 2 3 4 A. Saprykin, N. Chokani, and R. S. Abhari, “GEMSim: A GPU-accelerated multi-modal
mobility simulator for large-scale scenarios,” Simulation Modelling Practice and Theory,
vol. 94, pp. 199–214, 2019, doi: https://doi.org/10.1016/j.simpat.2019.03.002.

[25] ^K. W. Axhausen, A. Horni, and K. Nagel, The Multi-Agent Transport Simulation
(MATSim). London: Ubiquity Press, 2016.

[26] ^Cuda Toolkit — NVIDIA DEVELOPER. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit

[27] ^What is HPC? — Intel. [Online]. Available:
https://www.intel.la/content/www/xl/es/high-performance-computing/what-is-
hpc.html

[28] ^1 2 3 4 C. Guo and W. Xiong, “Parallel agent-based simulation of complex system based on
repast HPC,” in 2013 2nd International Symposium on Instrumentation and
Measurement, Sensor Network and Automation (IMSNA), 2013, pp. 808–812. doi:
10.1109/IMSNA.2013.6743400.

[29] ^Collier, Nick, Repast HPC Manual. 2013. [Online]. Available:
https://repast.github.io/docs/repast_hpc.pdf

[30] ^1 2 3 L. Wijerathne, W. Petprakob, L. Aguilar, M. Hori, and T. Ichmura, “Scalable HPC
Enhanced Agent Based System for Simulating Mixed Mode Evacuation of Large Urban
Areas,” Transportation Research Procedia, vol. 34, pp. 275–282, 2018, doi:
https://doi.org/10.1016/j.trpro.2018.11.042.

[31] ^OpenMP. [Online]. Available: https://www.openmp.org

References – 58

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

For preparing this report, besides the previous references, the following deliverables have been
taken into consideration:

Deliverable
Number

Deliverable Title Lead
beneficiary

Type Dissemination
Level

Due date

D4.1 AGRICORE requirements and
project management platform

AAT Report Public M12 (August
2020)

D6.6 Software Quality Assurance
measures for AGRICORE

AAT Report Public M15
(November
2020)

Annex A: List of Requirements (Gitlab Epics) – 59

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Annex A: List of Requirements (Gitlab Epics)

Module D1: ARDIT

Figure 16 AG.D1.FR.001. Provide a publicly accessible index of agriculture data sources

Figure 17 AG.D1.FR.002. Available for all stakeholders

Annex A: List of Requirements (Gitlab Epics) – 60

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 18 AG.D1.FR.003. Store relevant information of the data sources

Figure 19 AG.D1.FR.004. Researchers will be able to extend its scope with additional data
sources

Annex A: List of Requirements (Gitlab Epics) – 61

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 20 AG.D1.FR.005. Semantic search will be allowed

Module D2: DWH

Figure 21 AG.D2.FR.001. Centralise the information exchange within the AGRICORE IT
architecture

Figure 22 AG.D2.FR.002. Use a combination of SQL and non-SQL databases massive
parallel programming (MMP) technology and/or Hadoop/Spark

Annex A: List of Requirements (Gitlab Epics) – 62

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 23 AG.D2.FR.003. Provide high-performance analysis capabilities to the DWH

Figure 24 AG.D2.FR.004. Easy-to-manage access permissions

Figure 25 AG.D2.FR.005. Separate critical/private information from information suited to
be made public

Annex A: List of Requirements (Gitlab Epics) – 63

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 26 AG.D2.FR.006. Support both private and public cloud infrastructure
deployment

Module D3: DEM

Figure 27 AG.D3.FR.001. Data of interest extraction

Figure 28 AG.D3.FR.002. Distribution curves generation

Annex A: List of Requirements (Gitlab Epics) – 64

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 29 AG.D3.FR.003. Optimised data extraction operations

Figure 30 AG.D3.FR.004. Data output stored in DHW

Module D4: DFM

Figure 31 AG.D4.FR.001. Infer the underlying joint probability distribution by means of
statistical inference methods

Annex A: List of Requirements (Gitlab Epics) – 65

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 32 AG.D4.FR.004. Data output stored in DHW

Module D5: SPG

Figure 33 AG.D5.FR.001. Synthetic Reconstruction method

Figure 34 AG.D5.FR.002. Match the distribution of the agents' population of interest
taking account of the joint probability distributions

Annex A: List of Requirements (Gitlab Epics) – 66

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 35 AG.D5.FR.003. Receives input from the Data fusion module

Figure 36 AG.D5.FR.004. Data output stored in the DHW

Module D6: ABM-e

Figure 37 AG.D6.FR.001. Simulate the evolution of the ABM population

Annex A: List of Requirements (Gitlab Epics) – 67

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 38 AG.D6.FR.002. Manage the interactions required with the external modules

Figure 39 AG.D6.FR.003. Include the farm ABM model

Figure 40 AG.D6.NFR.001. Fully object-oriented implementation

Annex A: List of Requirements (Gitlab Epics) – 68

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 41 AG.D6.NFR.002. Allow a set of high performance computing features

Module D7: Land Market Module

Figure 42 AG.D7.FR.001. Land Module Market

Annex A: List of Requirements (Gitlab Epics) – 69

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Module D8: Product Market Module

Figure 43 AG.D8.FR.001. Product Markets module

Module D9: Production Factors Market Module

Figure 44 AG.D9.FR.001. Production Factors Market Module

Module D10: Environmental/Climate IAM

Figure 45 AG.D10.FR.001. Compute the main KPIs related to the environmental and
climatic impact assessment for a given set of ABM results

Annex A: List of Requirements (Gitlab Epics) – 70

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Module D11: Socio-economic IAM

Figure 46 AG.D11.FR.001. Compute the main KPIs related to the socio-economic impact
assessment for a given set of ABM results.

Module D12: Ecosystem Services IAM

Figure 47 AG.D12.FR.001. Compute the main KPIs related to the Ecosystem Services
impact assessment for a given set of ABM results.

Annex A: List of Requirements (Gitlab Epics) – 71

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Module D13: Climate Models Connectors

Figure 48 AG.D13.FR.001. Provide access to climate models to obtain weather and
climatic data

Module D14: Policy Environment Module

Figure 49 AG.D14.FR.001. Enable simulation of a wide variety of agricultural policy
instruments

Annex A: List of Requirements (Gitlab Epics) – 72

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Module D15: Biophysical Models Connectors

Figure 50 AG.D15.FR.001. Provide access to biophysical models to the AGRICORE tool

Figure 51 AG.D15.FR.002. Include plant, weather, stress, soil and agriculture
management

Annex A: List of Requirements (Gitlab Epics) – 73

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Module D16: AGRICORE Interface Module

Figure 52 AG.D16.FR.001. Centralise the interaction of the users with the AGRICORE suite

Figure 53 AG.D16.FR.001-1. User Access Management

Annex A: List of Requirements (Gitlab Epics) – 74

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 54 AG.D16.FR.001-1-2. User Registration

Figure 55 AG.D16.FR.001-2. Simulation Setup

Annex A: List of Requirements (Gitlab Epics) – 75

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 56 AG.D16.FR.001-2. Simulation Setup

Figure 57 AG.D16.FR.001-2-1. Simulation Setup Page

Annex A: List of Requirements (Gitlab Epics) – 76

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 58 AG.D16.FR.001-2-2. Synthetic Population Selection

Figure 59 AG.D16.FR.001-2-3. Selection of Policies to be included in the simulation.

Figure 60 AG.D16.FR.001-2-4. Selection of Simulation Period

Annex A: List of Requirements (Gitlab Epics) – 77

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 61 AG.D16.FR.001-2-5. Selection of Solver for the Simulation

Figure 62 AG.D16.FR.001-2-6. Selection of default KPIs to be computed

Figure 63 AG.D16.FR.001-3. Simulation Module

Annex A: List of Requirements (Gitlab Epics) – 78

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 64 AG.D16.FR.001-4. Visualisation Module

Figure 65 AG.D16.FR.001-5. Visualisation Module

Figure 66 AG.D16.FR.001-5-1. Synthetic Population Generator Configurator

Annex A: List of Requirements (Gitlab Epics) – 79

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 67 AG.D16.FR.001-5-2. Selection of Datasources for SPG

Figure 68 AG.D16.FR.001-5-3. Synthetic Population Generator (Down)Loader

Figure 69 AG.D16.FR.001-6. AGRICORE Suite Main Page

Annex A: List of Requirements (Gitlab Epics) – 80

AGRICORE – D6.1 AGRICORE Architecture and Interfaces

Figure 70 AG.D16.NFR.001. Developed as a cross-platform desktop application web
technologies

