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Executive Summary

AGRICORE is a research project funded by the European Commission under the RUR-04-2018 call,
part of the H2020 programme, which proposes an innovative way to apply agent-based modelling to
improve the capacity of policymakers to evaluate the impact of agricultural-related measurements
under and outside the framework of the Common Agricultural Policy (CAP).
This deliverable presents the AGRICORE data fusion module, which allows the integration and
blending of individual datasets (previously obtained by the data extraction module) to constitute
enriched datasets that are used for the operation of the different AGRICORE modules.

The main data fusion operation required for the implementation of an AGRICORE use case is the
one needed for producing the synthetic agents representing the agricultural and livestock holdings
under study. Specifically, a mathematical artefact is needed to generate the values then assigned to
the attributes that make up each of agent.

The mathematical tool chosen to perform this function is the Bayesian Network (BN). This deliv-
erable introduces the Bayesian Network construction algorithm(s) that have been developed and or
improved to be used within the AGRICORE project.

In order to test these algorithm(s), four synthetic samples of farms have been generated in three
NUTS2 regions and one NUTS3 sub-region of Greece. This deliverable presents these example cases
including the aggregations of specific variables, the structure of the resulting BN for each case, and
the evaluation of the fit of the generated synthetic sample with respect to the real baseline sample.

Executive Summary - 2
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Acronyms

Notation Description
AOI Attributes of Interest.

BN Bayesian Network.

CAP Common Agricultural Policy.
CPDAG Complete Partially Directed Acyclic Graph.

DAG Directed Acyclic Graph.
DEM Data Extraction Module.
DFM Data Fusion Module.
DWH Data Warehouse.

ETL Extraction-Transformation-Loading.

FEDHC Forward Early Dropping Hill Climbing.

KDE Kernel Density Estimate.

MMHC Max-Min Hill Climbing.
MMPC Max-Min Parents and Children.

PCA Principal Component Analysis.
PCHC PC Hill Climbing.
PDF Probability Density Functions.

SP Synthetic Population.
SPG Synthetic Population Generator.
SS Synthetic Sample.
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1 Introduction

Data fusion is the process of combining multiple data sources to generate information that is more
consistent, accurate, and useful than that the one provided by any of the individual data sources.
It enhances the decision-making process by extracting value from data. This process improves data
generation, storage, manipulation, and analysis.

The module in charge of this task in the AGRICORE project is presented as Data Fusion Module
(DFM). This module aims to fuse individual datasets located and extracted by the Data Extraction
Module (DEM) to obtain the mathematical artifacts (Bayesian Networks) that enable the Synthetic
Population Generator (SPG) to produce the (pseudo) random values that are then assigned to each
agent’s attributes.

Then, data fusion refers here to the process of estimating the joint probability distribution(s) of some
carefully selected Attributes of Interest (AoI). These are a collection of environmental, structural,
plant and animal products, subsidies and grants, all listed later. The estimated joint distribution,
represented in the form of a Bayesian Network, can be subsequently used for creating AGRICORE
agents by assigning values to their skeleton of empty attributes. The objective is for these agents to
mimic the statistical characteristics of the true population, represented by a sample of real farms, as
close as possible. A synthetic sample (SS) is created when the number of synthetic agents generated
is equal to the size of the real sample. When the number of synthetic agents generated is greater
than the size of the real sample and equals the size of the real population, we call it a Synthetic
Population (SP). The synthetic population must be targeted (contain only attributes of interest),
microscopic (each entity is explicitly represented as an individual agent) and anonymised (it must
be impossible to univocally identify a synthetic agent with any of the actual farms in the sample).
The SP must match the aggregated statistical moments of the real population as close as possible,
as this synthetic population will be the input for agent based models (ABMs) to simulate different
policy scenarios and assess their potential impact.

The remaining of the deliverable is structured as follows: section 2 briefly summarises the exchange
of information (input and output date) done between the DFM and the Data Warehouse (DWH).
Section 3 introduces the concept of Bayesian Networks and explains the algorithms (MMHC, PCHC,
FEDHC and MMPC) used for creating the Bayesian Networks and using them to generate values for
the agents’ attributes. These algorithms are applied in Section 4 to create synthetic samples of farms
in four case studies for three Greek NUTS2 regions (Central Macedonia, Thessalia, Peloponnisos)
and for one NUTS3 subregion (Thessaloniki). Finally, conclusions are presented in section 5.

Introduction - 7



AGRICORE – D2.3 Big Data Fusion Module

2 Data Fusion module connection with the DataWarehouse (DWH)

As part of its functionality, DFM must communicate with the data repository (also known as DWH)
to combine existing data to generate Bayesian Networks (BNs). Figure 1 depicts the inputs and
outputs of the DFM at a high level. In accordance with the proposed methodology, the DWH
will use distinct datasets in various formats previously loaded in the DWH. The resulting Bayesian
Network, which is the output of the DFM, is also stored in the DWH.

DATA FUSION MODULE (DFM)

DATA WAREHOUSE

MERGE
PROCESS

DATASET #1
(and metadata)

DATASET #N 
(and metadata)

... BAYESIAN
NETWORK

GENERATION

ENRICHED
DATASET

BAYESIAN
NETWORK

Figure 1: DFM connections with the DWH

Each necessary dataset for generating BNs should have been previously loaded into the DWH
by the Data Extraction Module (DEM) through the execution of its respective ETL (Extraction-
Transformation-Loading) script. The datasets typically required by AGRICORE are indexed in
ARDIT along with an adequate ETL. Although DFM and DEM do not have a direct connection to
one another, both are able to communicate indirectly through the DWH. From the point of view of
the user, this communication takes place sequentially.

Once the datasets are stored in the DWH, they should be combined to produce an enriched dataset
with the needed information for the next sub-module, which generates the Bayesian Network. The
BN could be represented by one or several files containing the following information (Include refer-
ence to D6.1):

• The textual definition of the Bayesian Network.

• The order in which the values of correlated attributes should be generated, as well as a list
of attributes that are completely independent and could be generated individually and in
parallel.

• The Probability Distribution Functions (PDFs) necessary to generate those attributes, en-
coded as mathematical expressions or marginal tables.

To access the DWH, both to extract datasets and to ingest the resulting BN description files, the
DFM must have the necessary permissions. The DWH itself provides native mechanisms for authen-
tication and authorisation. The DFM is responsible for calling these services with the appropriate
credentials.

Data Fusion module connection with the Data Warehouse (DWH) - 8
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3 Data fusion methods for Bayesian Network learning

Graphical models or probabilistic graphical models are probabilistic models that use a graph to
visually express the conditional (in)dependencies between random attributes (Vi, i = 1, . . . , D).
Nodes (or vertices) are used to represent the attributes Vi and edges between the nodes, for ex-
ample Vi − Vj, indicate relationship between the attribute Vi and attribute Vj. Directed graphs
are graphical models that contain arrows (arcs), instead of edges, indicating the direction of the
relationship, for example Vi → Vj. The parents of a node Vi are the nodes whose direction (ar-
rows) points towards Vi. Consequently, the node Vi is termed child of those nodes. For instance, if
Vi → Vj, then Vi is the parent of Vj and Vj is the child of Vi. Directed acyclic graphs (DAG) are
stricter in the sense that they impose no cycles on these directions, a crucial condition for the SPG
task. For any path between Vi and Vj, Vi → Vk → . . .→ Vj, no path from Vj to Vi (Vj → . . .→ Vi)
exists.

A BN [1, 2] B = ⟨G,P ⟩ consists of a DAG G over a collection of vertices (attributes) V and a
joint probability distribution P . P is linked to G through the Markov condition, which states that
each attribute is conditionally independent of its non-descendants given its parents. By using this
condition, the joint distribution P can be factorised as the product of conditional distributions

P (V1, . . . , VD) =
D∏
i=1

P (Vi|Pa(Vi)) , (1)

where D is the total number of attributes and Pa(Vi) denotes the parent set of Vi in G. If G entails
only conditional (in)dependencies in P and all conditional (in)dependencies in P are entailed by G,
based on the Markov condition, then G, P and G are faithful to each other, and G is a perfect map
of P [3].

A necessary assumption made by the BN learning algorithms is causal sufficiency; there are no
latent (hidden, non observed) attributes among the observed attributes V. The triplet (Vi, Vk, Vj)
where Vi → Vk ← Vj is known as v-structure and Vk is termed collider (nodes V1, V3 and V2 in
Figure 2 is such an example). If there is no edge between Vi and Vj the node Vk is called unshielded
collider. This translates to independence between Xi and Vj conditioning on Vk, if G and P are
faithful to each other [2, 3]. Conversely, the triplet of nodes (Vi, Vk, Vj) such that Vk → Vi and
Vk → Vj is called Λ-structure (nodes V3, V4 and V5 in Figure 2 is such an example). The Λ-structure
implies that Vi and Vj are conditionally independent given Vk.

Typically, multiple BNs encode the same set of conditional independences1. Such BNs are called
Markov equivalent, and the set of all Markov equivalent BNs forms the Markov equivalence class.
This class can be represented by a complete partially directed acyclic graph (CPDAG), which in
addition to directed edges also contains undirected edges. Undirected edges may be oriented either
way in some BNs in the Markov equivalence class (although not all combinations are possible),
while directed and missing edges are shared among all equivalent networks.

1Two DAGs are called Markov equivalent if and only if they have the same skeletons and the same v-structures
[4].

Data fusion methods for Bayesian Network learning - 9
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Figure 2: An example of a DAG. Nodes V1 and V2 are the parents of V3, whose children are nodes
V4 and V5. The common parents of a node are also called spouses. V 2 is the spouse of V 1 (and vice
versa, V 1 is the spouse of V 2) and V 6 is the spouse of V 3.

As an example of (1) we will write the joint distribution of six attributes V 1−V 6 based on the BN
of Figure 2 as

P (V 1, . . . , V 6) = P (V 6|V 3, V 5)× P (V 4|V 3)× P (V 3|V 1, V 2)× P (V 1)× P (V 2)× P (V 5),

where, in the BN terminology, the expression P (Vi|Vk, Vj) indicates that the conditioning attributes
Vk and Vj are the parents of Vi. In order to generate random values from a BN, the attributes must
be topolocigally ordered first, as in Figure 2, where the BN is presented in tree-like structure. For
instance, using the BN Figure 2 we can generate values first from the attributes with no parents,
V 1, V 2 and V 5. Those generated values of V 1 and V 2 are used, in combination, to generate values
from V 3. The values of V 6 are generated using the generated values of V 3 and V 5, whereas the
values of V 4 are generated using the generated values of V 3. The natural question of interest
now is how to construct the BN of Figure 2 using observational data and hence factorise the joint
distribution of the attributes.

3.1 The MMHC BN learning algorithm

BN learning algorithms are typically constraint-based, score-based or hybrid. Constraint-based
learning algorithms, such as PC [5] and FCI [2] employ conditional independence (CI) tests to dis-
cover the structure of the network (skeleton), and then orient the edges by repetitively applying
orientation rules. On the contrary, score-based methods [6, 7, 8], assign a score on the whole network
and perform a search in the space of BNs to identify a high-scoring network. Hybrid algorithms,
such as MMHC [9], PCHC [10] and FEDHC [11], combine both aforementioned methods; they first
perform CI tests to discover the skeleton of the BN and then employ a scoring method to direct the
edges in the space of BNs.

We particularly suggest the class of hybrid BN learning algorithms, and specifically MMHC [9],
which first identifies the statistically significant associations between the attributes and then applies
a scoring method to orient those relationships. FEDHC is a recently introduced algorithm that is
designed to work mainly with large sample sizes and is available in the R package bnlearn [12]. At

Data fusion methods for Bayesian Network learning - 10
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first, the MMPC attribute selection algorithm is applied to each attribute and secondly the Hill-
Climbing (HC) scoring phase orients the directions of the statistically significant relationships. The
algorithm is briefly discussed over the next four sub-sections followed by the importance of prior
knowledge (e.g. theory), validation techniques and the advantage/disadvantages of BNs in general.

3.1.1 The MMPC attribute selection algorithm

In the classical forward selection algorithm all available predictor attributes are constantly examined
and their statistical significance is assessed at each step. Assuming that out of 10, 000 predictor at-
tributes only 10 are selected. This implies that almost 10, 000×10 regression models must be fitted
and the same amount of statistical tests must be executed. The computational cost is tremendous
rendering this computationally expensive algorithm impractical and hence prohibitive. Secondly,
this approach selects a relatively high number of non-significant attributes.

MMHC [13] is a hybrid method whose skeleton identification phase, also known as Max-Min Parents
and Children (MMPC) algorithm, is presented in Algorithm 1. Given a target attribute (attribute
of interest, Vi), a search for its statistically significantly associated attributes Vs is performed via
statistical tests. The associations are stored and the attribute with the highest association (Vj) is
chosen and an edge is added between Vi and Vj. In the second step, all CI tests between the target
attribute and the other attribute, conditional upon all possible subsets of the previously selected
attribute, are performed (Vi ⊥⊥ Vm|Vj, m ̸= i, j) and the non statistically significant attributes are
neglected. The previously stored associations are updated, that is, for each attribute the minimum
association between the old and the new variables is stored and the attribute with the highest
association is selected2. In subsequent steps, while the set of the selected variables increases, the
conditioning set does not, as its cardinality is at most equal to l. At the end, a backward selection
in the using Max-Min heuristic is applied attempting to remove wrongly selected attributes.

The MMPC algorithm, acts as a speed-up modification of the traditional forward selection algorithm
coupled with a variant of the backward selection algorithm [14] while retaining the false discovery
rate (proportion of non significant attributes wrongly selected) at low levels [15]. At each step, non
significant attributes are excluded from future searches and instead of conditioning on all selected
attributes, thus reducing the computational cost. Secondly, the conditional independence (CI) test
for the next attribute, conditions upon all possible subsets, up to a pre-specified cardinality l, of the
already selected attributes. This property makes MMPC suitable for small sample sized datasets
with numerous attributes, since a CI test involving many parameters has low power with small
samples.

Algorithm 1 (H) 1: Input: Data set on a set of D variables V.
2: Repeat for all variables i = 1, . . . , n
3: Let l = 0 and S = ∅.
4: Select a variable Vi and keep all variables Vj, j ̸= i for which Vi ⊥⊥ Vj holds true.
5: Chose the variable Vj with the highest association among these variables,
6: add and edge Vi − Vj and add Vj to S.

2This is the Max-Min heuristic.

Data fusion methods for Bayesian Network learning - 11
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7: Repeat
8: l = l + 1
9: If

(
Vi ⊥⊥ Vj|S(l)

)
delete edge Vi − Vj, j ̸= i, where S(l) denotes all possible

10: subsets of the selected variables in S, with cardinality less than or equal to l.
11: Chose the variable Vj with the highest minimum association among them,
12: add and edge Vi − Vj and add Vj to S.
13: Until l has reached the pre-specified maximum value.
14: Return G.

3.1.2 Statistical tests of independence

The MMPC algorithm iteratively performs statistical tests to decide as for the significance of the
relationships, so let us first briefly describe the concept of independence. Let X and Y be two
random attributes, and Z be a (possibly empty) set of random attributes. X and Y are condition-
ally independent given Z, if P (X, Y |Z) = P (X|Z) · P (Y |Z) holds for all values of X, Y and Z.
Equivalently, CI of X and Y given Z implies P (X|Y,Z) = P (X|Z) and P (Y |X,Z) = P (Y |Z). Such
statements can be tested using CI tests.

A frequently employed independence test for two continuous attributes X and Y , conditional on a
set of attributes Z is the partial correlation test [16] that assumes linear relationships among the
attributes. The test statistic for deciding whether the partial Pearson correlation coefficient is zero
is given by

Tp =
1

2

∣∣∣∣log 1 + rX,Y |Z

1− rX,Y |Z

∣∣∣∣√n− |Z| − 3, (2)

where n is the sample size, |Z| denotes the number of conditioning attributes and rX,Y |z is the
partial Pearson correlation3 of X and Y conditioning on Z. When Z is empty (|Z| = 0), the partial
correlation reduces to the usual Pearson correlation coefficient.

The p-value of the test is used to decide on the significance of the CI between X and Y . It is defined
as 2 (1− F (Tp, df), where F (.) denotes cumulative distribution of the t distribution with degrees
of freedom df = n − |Z| − 3. The p-value lies within (0, 1) with smaller values indicating higher
strength of (un)conditional association between X and Y . If it is less than 0.05 the two attributes
are claimed to be statistically significantly (conditionally) associated. In order to avoid numerical
overflow problems, that could yield erroneous results, the logarithm of the p-value is computed
instead, and subsequently the threshold of significance becomes log(0.05) = −2.995732.

3.1.3 Skeleton identification phase of the MMHC algorithm

During the skeleton identification phase of MMHC, the MMPC algorithm is applied to each attribute
(call it target attribute, Vi), performing the steps described below.

1. Input: Data set on a set of D attributes V.

3The partial correlation is efficiently computed using the correlation matrix of X, Y and Z [16].
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2. Let the adjacency matrix G be full of zeros.

3. Perform the MMPC algorithm for all attributes Vi, i = 1, . . . , D, excluding the backward
phase, and return Si, the set of attributes (Vj, j ̸= i) related to Vi.

4. Set Gij = 1 for all j ∈ Si.

5. If Gij ̸= Gji set Gij = Gji = 0.

6. Output: The (square) adjacency matrix G that contains 0s and 1s denoting the edges (statis-
tically significant relationships) between pairs of attributes.

The final output is a matrix containing the edges (undirected relationships) discovered between each
attribute, in an asymmetric way. The detected edges between any pair of attributes will remain
only if they were identified by both attributes. If for example, Vj was found to associated with Vi

(Gji = 1), but Vi was not found to be associated with Vj (Gij = 0), then no edge between Vi and
Vj will be added, hence Gij = Gji = 0. The final output is the so called adjacency matrix G which
contains 0s and 1s. If the element Gij (and Gji) equals zero this indicates that attributes Vi and Vj

are not related, whereas if Gij = Gji = 1 indicates that attributes Vi and Vj are related.

3.1.4 Hill Climbing phase of the MMHC algortihm

During the second phase of MMHC a search for the optimal DAG is performed, where edges turn
to arrows or are deleted towards maximisation of a score metric. This scoring phase performs a
greedy HC search4 in the space of BNs, commencing with an empty graph [9]. The edge deletion or
direction reversal that leads to the largest increase in score, in the space of BNs5, is applied and the
search continues in a similar fashion recursively. The fundamental difference from standard greedy
search is that the search is constrained to the orientation of the edges discovered by the skeleton
identification phase6.

The Bayesian Information Criterion (BIC) [17] is a frequent score used for continuous data, while
other options include the multivariate normal log-likelihood, the Akaike Information Criterion (AIC)
and the Bayesian Gaussian equivalent7 [18] score. The Bayesian Dirichlet equivalent (BDE) [19],
the BDe uniform score (BDeu) [7], the multinomial log-likelihood score [20] and the BIC score
[17] are four options for scoring with discrete data. In this work we employed the BIC score

BIC(G,Θ | V) =
∑n

i=1 logP (Vi | Pa(Vi),ΘVi
)− log (n)

2
|ΘVi
|.

3.2 Prior knowledge required to build BNs

MMHC, as all BN learning algorithms, is agnostic of the true underlying relationships among the
input data. It is customary though for practitioners and researchers to have prior knowledge of

4Tabu search is such an iterative local searching procedure adopted by [9] for this purpose.
5This implies that every time an edge removal, or arrow direction is implemented, a check for cycles is performed.

If cycles are created, the operation is canceled regardless if it increases the score.
6For more information see [9].
7The term ”equivalent”refers to their attractive property of giving the same score to equivalent structures (Markov

equivalent BNs) i.e., structures that are statistically indistinguishable [9].
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the necessary directions (forbidden or not) of some of the relationships among the attributes. For
instance, attributes such as manager’s gender or age cannot be caused by any economic or demo-
graphic attributes. Economic theory (or theory from any other field) can further assist in improving
the quality of the fitted BN by imposing or forbidding directions among some attributes. This prior
information can be inserted into the scoring phase of MMHC leading to less errors and more realistic
BNs.

Let us give an example of the importance and necessity of prior knowledge tailored in the needs of
the current project. We know that the crop production cannot influence the cultivated area, or the
irrigated area and the milk production cannot affect the livestock. The set of all forbidden directed
relationships forms the prior knowledge that must be incorporated into the BN learning algorithm
affecting only the HC phase. Non incorporation of this information would yield an unrealistic BN
and as a result, an unrealistic joint distribution that fails to describe the true underlying joint dis-
tribution.

The statistical methods used to analyse the different variables included in the BN and to produce
the prior knowledge needed to create the BN are presented in deliverable D2.2.

3.3 BN learning validation techniques

The strength of the significant relationships detected by the BN is defined as the decrease in the
BIC score when a specific arrow (or arc or directed relationship) is deleted while fixing the structure
of the BN stable. The higher the reduction in the score the higher the indications that this directed
relationship is important or strong. This allows to order the relationships based on their strength.

Bootstrap can be implemented as a second measure (apart from the strengths) of the validity of
the discovered (directed) relationships among the attributes. A set of of observations is sampled
with replacement from the original sample (observed farms) and the BN was learned using MMHC.
This process is repeated 1,000 times storing the discovered arcs of each repetition. The measure of
interest is the proportion of times the observed directed relationships are discovered in the bootstrap
samples. This acts as a metric of the confidence or the stability in the relationship of each discovered
(directed) relationship in the original sample.

3.4 Generation of synthetic samples of farms

Generation of random values from BNs with continuous data leads to normally distributed values,
which are far from reality as in our case where the distributions of most attributes are highly skewed
to the right and most of them contain zero values. A more fine tuned method is required to simulate
values whose distribution is close to the observed data distribution. To this end, we employed a
complex generation scheme based on non-parametric regression relying on the BN structure learned
using the attributes of the observed farms. The order of generation is sequential as mandated by
the BN. That is, the values of each attribute are generated conditional upon its parent attribute(s).
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For attributes with no parents, we computed the kernel density estimate (KDE) of the distribution
of the non-zero values and generated non-zero values from this KDE, whereas zero values remained
the same. For attributes with at least one parent, we utilised the the k-NN regression algorithm.
The k-NN algorithm is a naive kernel regression that takes into account only the values of the k
closest neighbours to a specific value.

Whenever values for an attribute are generated, we transform the data such that their mean is equal
to the mean of the observed attribute values. However some post generation refinement was deemed
necessary. Specifically for the crop production, when the synthetic cultivated land of a crop is zero,
the corresponding (synthetic) irrigated land and crop production were set to zero. If the irrigated
area of some crops being higher than the corresponding cultivated land, the irrigated area was set
equal to the cultivated area. A similar refinement process took place for the animal products. For
instance, the values of the animal products for the synthetic farms with no livestock were zeroed.

3.5 Evaluation of the generated synthetic samples

Researchers ordinarily assess the fit of the univariate distributions, that is, the distribution of each
attribute. We employed a battery of both parametric and non-parametric testing procedure in or-
der to evaluate the synthetically generated sample of farms. We applied a KDE hypothesis test of
equality of two distributions (see Appendix) was applied to assess the equality of the distributions
of each attribute, between the observed and the synthetic farms. We further applied a second non-
parametric that is energy distance based [21]. The same energy distance test was applied to test
the equality of the joint distributions, of the observed and of the synthetic farms. This inspects the
equality of the distributions at the multi-attribute level, taking into account all attributes at once.

Secondly, the γ-OMP [22] and FBED [23] attribute selection algorithms were engaged in conjunc-
tion, to identify which attributes are responsible for separating between the two samples and how
accurate their separation can be. Ideally, the two samples, the observed and the synthetic farms
should be non-separable.

Thirdly we applied principal component analysis (PCA) in order to project the data into lower
dimensions so as to visually inspect the two samples, the observed versus the synthetic farms.
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4 Case studies

4.1 A synthetic sample for Central Macedonia (NUTS-2 level)

The greek FADN sample for Central Macedonia contains 1,017 farms, the largest sample available
at NUTS-2 level. Due to sparsity (excessive amounts of zeros) in many attributes, aggregation
of attributes, based on their proximity, resulting in 98 attributes, was deemed mandatory for the
the BN learning and the SPG task subsequently8. Those 98 attributes, grouped according to the
clusters presented previously, can be found in the Appendix.

• Crop production. Table A.1 shows the crop production of central Macedonia, where some
crops have been aggregated due to sparsity (excessive amount of zeros), yielding 14 crops.

• Animal products. Table A.2 shows the condensed animal production, the weighted livestock,
values of sold and slaughtered animals, values of animals left rearing-breeding and the total
milk production.

• Farm income, subsidies and grants. Table A.3 contains information on the components
that formulate the attribute termed ”other farm income”, the aggregation of the following
characteristics: value of sold animals, value of sales of wool, eggs, honey and manure, other
income from livestock (e.g. contract rearing), income from land (e.g. leasing), food processing
(e.g. cow’s milk), contractual work and income from other sources (e.g. tourism, production of
renewable energy). Table B.9 shows the subsidies and grants grouped in 4 clusters, decoupled
payments, crops and animals, exceptional support and rural development and subsidies on
cost. Note that despite the subsidies on cost being listed in the FADN guide manual, this
attribute was not applicable in the Greek use case.

• Variable inputs cost. Table A.4 contains 11 attributes (2 attributes were merged) representing
the variable inputs cost.

As previously mentioned, BN learning algorithms are agnostic of the input data and require some
prior knowledge to facilitate the production of more realistic results. A set of constraints must
be imposed among these 98 attributes. These refer to rationally forbidden directions between the
pairwise relationships (The attribute codings can be found in the Appendix).

1. Within crop production:

• The production (CM-Xi.3) does not affect the cultivated area (CM-Xi.1) nor the irrigated
area (CM-Xi.2), for all 14 products, i=1,...,14.

• The irrigated area (CM-Xi.2) does not affect the cultivated area (CM-Xi.1), for all 14
products.

2. Within animal production:

• The total milk production (CM-Z1.1) does not affect the weighted livestock (CM-Y1.1),
the value of sold animals (CM Y1.3) and the value of slaughtered animals (CM-Y1.5).

8For instance, the 20 crops were merged into 14 crops.
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• The value of animals for breeding (CM-Y1.7) does not affect the weighted livestock
(CM-Y1.1), the value of sold animals (CM-Y1.3) and the value of slaughtered animals
(CM-Y1.5).

• The value of slaughtered animals (CM-Y1.5) does not affect the weighted livestock (CM-
Y1.1) and the value of sold animals (CM-Y1.3)

• The value of sold animals (CM-Y1.3) does not affect the weighted livestock (CM-Y1.1).

3. Other restrictions:

• No attribute affects the soil, spatial and climatic data (Gi, i=1,...,12).

• No attribute affects the manger’s gender (L1.1), age (L1.2) and training (L1.3).

• Xi.3, Yi.3 and M1 do not affect the farm labour attributes (L).

The MMHC BN learning algorithm discovered 121 statistically significantly associated relationships.
These are presented in Table 1 along with their directions and their strength. For instance, the
relationship between C5 and A2 is directed from C5 to A2 and hence in the BN terminology this is
denoted by C5→A2. The same is true for all relationships. The results of bootstrap validation also
appear in Table 1. The 83 out of the 121 (68.6%) identified directed relationships in the observed
farms were observed more than 50% of the times in the bootstrap samples. This, rather low, number
does not come by surprise as the data contain many attributes with high proportions of zero values.
When sampling with replacement, the percentage of unique values in the bootstrap sample is on
average equal to 1−((1−1/n))n, which in the current situation is equal to 63%. Hence the bootstrap
sample of 1,017 farms contains around 63% unique farms. Attributes having more than 63% zeros
may contribute only zeros to the bootstrap sample and hence no relationship can be discovered,
even if there is one.

Table 1: The 121 statistically significant associations clustered according to the tables (see Ap-
pendix). The computed strengths were normalised with the strongest strength playing the role of
the basis. The column ”boot” refers to the proportion of times the observed directed relationships
were discovered in the bootstrap samples.

from to strength boot from to strength boot from to strength boot
C4 X12.1 0.0094 0.6100 L4.1 X13.3 0.0007 0.4840 X12.2 X12.3 0.1322 1.0000
C4 Y1.1 0.0069 0.6000 X1.1 X1.3 0.2231 1.0000 X13.1 X13.2 0.0435 1.0000
C5 S1 0.0255 0.2570 X2.1 X2.2 0.0044 0.6860 X13.1 X13.3 0.0636 1.0000
C5 Y1.1 0.0015 0.1030 X2.1 X2.3 0.1940 1.0000 X13.1 X14.3 0.0022 0.6010
C6 S1 0.1152 0.5270 X2.2 X2.3 0.0046 0.9570 X13.1 X2.3 0.0007 0.2020
C6 X11.1 0.0018 0.1890 X3.1 X3.2 0.6936 1.0000 X13.2 X1.2 0.0003 0.5370
C6 X2.1 0.0327 0.5300 X3.1 X3.3 0.3356 0.6570 X13.3 X9.3 0.0003 0.3630
C6 X8.1 0.0083 0.2630 X4.1 X4.2 0.0009 0.6720 X14.1 X14.2 0.1088 1.0000
G1 G4 0.0664 0.9990 X4.1 X4.3 0.2652 1.0000 X14.1 X14.3 0.0408 1.0000
G1 G7 0.0130 1.0000 X4.2 X4.3 0.0017 0.7600 X14.2 C4 0.0020 0.5330
G2 G3 0.0008 0.3530 X5.1 X5.2 0.7173 0.8600 X14.2 X14.3 0.0019 0.7870
G2 G7 0.0025 0.9480 X5.1 X5.3 0.3918 0.8550 Y1.3 V4 0.1117 0.3030
G2 X10.3 0.0019 0.6550 X5.3 V8 0.0238 0.1530 Y1.3 Y1.5 0.5004 1.0000
G3 G5 0.0026 0.8290 X6.1 C6 0.0074 0.3800 Y1.7 X11.1 0.0005 0.4650
G4 G3 0.0465 0.9460 X6.1 X6.2 0.0003 0.6750 Y1.7 Z1.1 0.0175 0.8420

continued....
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from to strength boot from to strength boot from to strength boot
G4 G5 0.0999 1.0000 X6.1 X6.3 0.2536 1.0000 Z1.1 X11.1 0.0015 0.3740
G4 X6.3 0.0002 0.3920 X6.2 X6.3 0.0323 0.9910 M1 V10 0.0160 0.7530
G7 C4 0.0059 0.9940 X6.3 V10 0.0006 0.2700 S1 A4 0.3061 0.9920
G7 X9.1 0.0014 0.3950 X7.1 S2 0.1559 0.8090 S1 S2 0.0738 0.8430
G7 Y1.7 0.0025 0.5130 X7.1 X7.2 0.3066 1.0000 V1 Y1.1 0.0050 0.3330
G8 G10 0.2725 1.0000 X7.1 X7.3 0.0205 1.0000 V3 C6 0.0222 0.4830
G8 G9 0.0196 0.9800 X7.2 V9 0.0070 0.5510 V3 V5 0.0110 0.2770
G9 C4 0.0122 0.4990 X7.2 X7.3 0.0053 0.9700 V3 V6 0.0150 0.0810
G9 G10 0.0730 0.9030 X8.1 X8.2 0.0289 0.8900 V3 V9 0.0167 0.4660
G10 G12 0.0284 0.7340 X8.1 X8.3 0.1898 1.0000 V5 C6 0.0094 0.2750
G11 G12 0.1543 0.6010 X8.2 X8.3 0.0238 1.0000 V5 V10 0.0133 0.6600
G11 X12.1 0.0003 0.2630 X9.1 X9.2 0.0435 1.0000 V6 Q2 0.1007 0.8510
Q1 V11 0.0960 0.5630 X9.2 V1 0.0003 0.2450 V6 Q3 0.0713 0.8170
Q1 V2 0.0349 0.7490 X9.2 V5 0.0041 0.4880 V6 V5 0.0172 0.7990
Q1 V6 0.0825 0.8400 X9.2 X9.3 0.0328 1.0000 V6 V7 0.0564 0.9680
Q3 V7 0.0075 0.3840 X9.3 S3 0.0038 0.5660 V7 V8 0.0350 0.8860
L1.1 L1.5 0.0120 0.9880 X10.1 X10.2 0.2315 1.0000 V8 V2 0.0105 0.2040
L1.2 L1.3 0.0027 0.9980 X10.1 X10.3 0.0180 0.9770 V8 V9 0.0192 0.1710
L1.3 L1.5 0.0000 0.4030 X10.2 X10.3 0.0002 0.6590 V9 C4 0.0035 0.6130
L1.5 L1.4 0.2072 0.9810 X11.1 X11.2 0.0386 0.9770 V9 S3 0.0043 0.3460
L2.1 L2.2 1.0000 0.9570 X11.1 X11.3 0.0081 1.0000 V9 X2.2 0.0017 0.3130
L3.1 L4.1 0.0117 0.4130 X11.2 V9 0.0004 0.3390 V10 L4.1 0.0015 0.3000
L3.1 L5 0.0137 0.6120 X11.2 X11.3 0.0285 1.0000 V10 V1 0.0070 0.5410
L3.1 X8.3 0.0005 0.3330 X11.2 X4.2 0.0026 0.7720 V11 V3 0.0867 0.6280
L3.1 X9.1 0.0034 0.3950 X11.2 X9.3 0.0001 0.3510
L4.1 V1 0.1656 0.7500 X12.1 X12.2 0.2145 1.0000

4.1.1 Evaluation of the synthetic sample generation in central Macedonia

Using the 98 attributes and the estimated BN structure we generated a sample of 1,017 synthetic
farms whose characteristics match to a high a degree the characteristics of the observed farms.
Application of the γ-OMP [22] and FBED [23] attribute selection algorithms indicated that the two
samples (observed and synthetic farms) can be separated with accuracy 58.6%. These two algorithm
were ordinarily identifying the attribute showing the years of education (train) was responsible for
this level of separation. When this specific attributes was removed, γ-OMP could not separate the
farms (accuracy = 50%).

The KDE hypothesis test of equality of two distributions applied to assess the equality of the dis-
tributions of each of the 95 attributes9 between the observed and the synthetic farms showed that
the majority of the associated p-values (74/95, 78%) were more than 0.05, indicating that the dis-
tributions of the synthetic farms are in close agreement with those of the observed farms. Figure 4
visualizes the distributions of the attributes measuring the crop production. These are the kernel
density estimates of some attributes of the observed and of the synthetic farms. It can be observed
that the densities of the attributes of observed and of the synthetic farms are in close agreement.
The energy test is more sensitive and detected 63 out of 95 (66.3%) distributions of attributes as

9Three attributes had excessive amounts of zeros and the test was not applicable.
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being statistically equal.

When applied to the joint distributions of the the observed and the synthetic farms, the energy test
produced a p-value equal to 0.967 indicating a high similarity between the two joint distributions.
However, the attributes are measured in different scales and different units of measurements. For
this reason, the two groups (observed and synthetic farms) were standardised to have zero means
and unity variances and the energy test was applied to the transformed data. The produced p-value
was equal to 0.135, which corroborates the results of the sample generation process.
Figure 8 shows the data projected onto the first 5 principal components produced by PCA. It is
evident that the synthetic farms cannot be distinguished from the observed farms.

4.2 A synthetic sample for Thessaloniki (Nuts-3 level) sub-region of central
Macedonia

Thessaloniki region was included for (further) validation purposes, since it is a sub-region located
within central Macedonia. In the greek FADN, Thessaloniki region contains the second largest
collection of farms at the NUTS-3 level, equal to 325 farms. Chalkidiki region lies at the south of
Thessaloniki and since the former contains only 20 farms we decided to include them in Thessaloniki
region.

Specifically for the crop production, further aggregation was performed, again due to excessive
number of zeros, merging two crops into one (see Table A.1 in the Appendix), thus leaving us with
13 attributes describing the crop production. Additionally, the same set of constraints imposed on
the BN learning for the case of central Macedonia was also imposed among the 95 attributes of
Thessaloniki.

Table 2 presents the strengths of the statistically significantly associated relationships discovered
via the MMHC BN learning algorithm. Evidently, the BN identified 83 directed relationships in
Thessaloniki, which are equal to 68.6% of the relationships identified in central Macedonia. This
does not come by surprise for two reasons: a) the sample size of the farms in Thessaloniki is 1/3 of the
number of farms in central Macedonia, b) the proportion of zero values is higher in some attributes
and c) the merge of two crops in one leading to 13 crops. These three reasons combined, render
many relationships undetectable resulting into only 44 common identified directed relationships
between the two regions. The table also contains the percentage of times the detected relationships
appeared in the bootstrap samples. The 72.3% of the detected relationships (60 out of 83) appeared
more than 50% in the bootstrap samples.

Table 2: The 83 statistically significant associations clustered (see Appendix for the tables that
group the attributes). We remind the reader that the Xis refer to TH. The computed strengths
were normalised with the strongest strength playing the role of the basis. Numbers less than 1 show
the strength of the relationship relevant to the strongest relationship, that between L2.1 and L2.2.

from to strength boot from to strength boot
C4 Y1.1 0.0043 0.2500 X5.3 V8 0.2018 0.7700
C6 L3.1 0.0054 0.1400 X6.1 X6.3 0.2872 1.0000
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G1 G4 0.0562 0.9400 X6.2 X3.3 0.0216 0.7000
G1 G5 0.0004 0.4300 X6.2 X6.3 0.0160 0.5050
G2 X10.3 0.0024 0.6000 X7.1 X7.3 0.0821 1.0000
G4 C4 0.0100 0.7900 X7.2 X7.3 0.0573 1.0000
G4 G5 0.0880 0.9950 X8.1 X8.3 0.1787 1.0000
G4 G7 0.0590 0.9700 X9.1 X12.1 0.0009 0.3700
G5 G7 0.0125 0.9350 X9.1 X9.2 0.0106 0.6900
G7 G6 0.0558 0.9650 X9.2 X9.3 0.0698 1.0000
G8 G10 0.6136 0.9950 X9.3 S3 0.0114 0.6000
G8 G11 0.0342 0.3900 X10.1 C4 0.0011 0.1950
G9 X7.3 0.0076 0.8950 X10.1 X10.2 0.2545 1.0000
G11 G12 0.1737 0.9850 X10.1 X10.3 0.0020 0.6200
G11 L1.6 0.0024 0.4300 X10.2 X10.3 0.0029 0.7000
G12 G3 0.0183 0.9450 X11.1 X11.3 0.0486 1.0000
G12 G9 0.0715 0.7150 X11.1 Y1.7 0.0032 0.1400
Q1 V6 0.1218 0.9250 X11.2 X11.3 0.0510 0.9850
Q1 V7 0.1267 0.4800 X12.1 X12.2 0.0618 0.9900
Q2 V5 0.0026 0.2350 X12.2 X12.3 0.0379 0.9700
Q3 V6 0.0113 0.1950 X12.3 Y1.1 0.0024 0.3150
L1.5 L1.4 0.2049 0.4900 X13.1 X13.2 0.1479 1.0000
L1.6 L1.4 0.0024 0.3800 X13.1 X13.3 0.0592 0.9850
L2.1 L2.2 1.0000 0.6900 X13.2 X13.3 0.0052 0.7700
L3.1 V10 0.0027 0.2700 Y1.1 V1 0.0107 0.3150
L4.1 V1 0.1891 0.9350 Y1.3 Y1.5 0.4643 1.0000
L4.1 V5 0.0065 0.1400 Y1.7 Z1.1 0.0162 0.5400
L4.1 Y1.1 0.0159 0.3650 Z1.1 L4.1 0.0134 0.2250
L5 L3.1 0.0309 0.3750 S1 A4 0.3864 1.0000
X1.1 X1.3 0.1901 1.0000 S2 L5 0.0024 0.1000
X2.1 X2.3 0.1568 1.0000 S2 X7.1 0.0411 0.2200
X2.2 X2.3 0.0091 0.8900 V3 C6 0.0663 0.3650
X2.2 X7.2 0.0053 0.1100 V3 V11 0.0892 0.5700
X3.1 X3.2 0.5958 0.9800 V5 V9 0.0035 0.2050
X3.1 X3.3 0.3353 0.7150 V6 Q2 0.0831 0.6150
X4.1 X2.3 0.0038 0.3200 V6 V5 0.0411 0.9650
X4.1 X4.3 0.2653 1.0000 V7 Q3 0.0640 0.6550
X4.2 X11.2 0.0077 0.3900 V7 S2 0.0857 0.2450
X4.2 X4.3 0.0011 0.5350 V9 C4 0.0043 0.7400
X4.3 X2.3 0.0077 0.4750 V9 V10 0.0069 0.4600
X5.1 X5.2 0.6599 0.8800 A4 V3 0.0917 0.4550
X5.1 X5.3 0.3612 0.7650

4.2.1 Evaluation of the synthetic sample generation in Thessaloniki

Application of the γ-OMP [22] and FBED [23] attribute selection algorithms indicated that the two
samples (observed and synthetic farms) can be separated with accuracy 75%. These two algorithms
were ordinarily identifying the irrigated area of cotton and the values of animals for rearing or
breeding as the two attributes responsible for this level of separation. When these two attributes
were removed, γ-OMP could not separate the farms (accuracy = 50%). The mean of the irrigated
area of cotton in the synthetic farms is less than the mean in the observed farms. Secondly, the
values of animals for rearing or breeding contain 317 0s in the observed farms, but 325 0s in the
synthetic farms. Especially for the second attribute, this excessive proportion of zeros has a great
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Figure 4: Distributions of the crop production (attributes CM-X1.3 - CM-X14.3). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 5: Distributions of the animal products (attributes CM-Y1.1, CM-Y1.3, CM-Y1.5, CM-Y1.7,
CM-Z1) and of the other farm income (CM-M1). The black line refers to the observed farms, while
the red line refers to the synthetic farms. The KDE test p-value appears on the top-right.
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Figure 6: Distributions of the closing valuation of the farm assets (attributes CM-A1 - CM-A4) and
of the subsidies and grants (CM-S1 - CM-S3). The black line refers to the observed farms, while the
red line refers to the synthetic farms. The KDE test p-value appears on the top-right.
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Figure 7: Distributions of the variable inputs cost (attributes CM-V1 - CM-V11). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 8: Central Macedonia: The data projected onto the first 5 principal components. The black
circles refer to the observed farms whereas the red circles refer to the synthetic farms.
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impact as already manifested due to the small sample size.

The KDE test assessing the distributions of the synthetic values of the attributes produced satis-
factory results. The p-value for the distributions of 69 out of the 92 attributes (75%) was more
than 0.05 indicating that these distributions, of the observed and and the synthetic farms, can be
assumed (statistically) equal. The energy test was more conservative and produced 62 out of 92
p-values (67.4%) greater than 0.05.

Figure 10 presents the KDE of the observed and of the synthetic crop production in the 13 attributes.
Evidently, the peaks of the estimated distributions of the cotton differ. This does not come by sur-
prise as there are 255 observed farms with 0 production, whereas the synthetic farms contain 233 0s.
The difference is small but due to the small sample size (only 325 farms) this difference is magnified.

When applied to the joint distributions of the the observed and the synthetic farms, the energy test
produced a p-value equal to 0.861 indicating a high similarity between the two joint distributions.
However, the attributes are measured in different scales and different units of measurements. For
this reason, the two groups (observed and synthetic farms) were standardised to have zero means
and unity variances and the energy test was applied to the transformed data and produced p-value
equal to 0.070. The p-value seems small, yet it shows an acceptable agreement or fit.

Figure 11 shows the data projected onto the first 5 principal components produced by PCA. It
is evident that the synthetic farms cannot be distinguished from the observed farms.

4.3 A synthetic sample for Thessalia (NUTS-2 level)

Thessalia is located at the center of the continental Greece and contributed to the Greek FADN
sample with 509 farms. We used the same constraints as in central Macedonia for the BN learning
process. Due to sparsity (excessive amounts of zeros) in many attributes, aggregation of attributes,
based on their proximity, resulting in 86 attributes, was deemed mandatory for the the BN learning
and the SPG task subsequently10. Those 86 attributes, grouped according to the clusters presented
previously, can be found in the Appendix. Additionally, the same set of constraints imposed on
the BN learning for the case of central Macedonia was also imposed among the 86 attributes of
Thessalia.

• Crop production. Table A.1 shows the crop production of central Macedonia, where some
crops have been aggregated due to sparsity (excessive amount of zeros), yielding 10 crops.

• Animal products. Table A.2 shows the condensed animal production, the weighted livestock,
values of sold and slaughtered animals, values of animals left rearing-breeding and the total
milk production.

• Farm income, subsidies and grants. Table A.3 contains information on the components
that formulate the attribute termed ”other farm income”, the aggregation of the following
characteristics: value of sold animals, value of sales of wool, eggs, honey and manure, other

10For instance, the 20 crops were merged into 10 crops.
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Figure 10: Distributions of the crop production (attributes TH-X1.3 - TH-X13.3). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 11: Thessaloniki: The data projected onto the first 5 principal components. The black circles
refer to the observed farms whereas the red circles refer to the synthetic farms.
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income from livestock (e.g. contract rearing), income from land (e.g. leasing), food processing
(e.g. cow’s milk), contractual work and income from other sources (e.g. tourism, production of
renewable energy). Table B.9 shows the subsidies and grants grouped in 4 clusters, decoupled
payments, crops and animals, exceptional support and rural development and subsidies on
cost. Note that despite the subsidies on cost being listed in the FADN guide manual, this
attribute was not applicable in the Greek use case.

• Variable inputs cost. Table A.4 contains 11 attributes (2 attributes were merged) representing
the variable inputs cost.

Table 3 presents the strengths of the statistically significantly associated relationships discovered
via the MMHC BN learning algorithm. Evidently, the BN identified 96 directed relationships in
Thessalia presented in Table 3, along with their estimated strength, while Figure 12 shows the BN
structure. The results of bootstrap validation also appear in Table 3. Out of the 96 identified
directed relationships in the observed farms 61 (63.5%) were observed more than 50% of the times
in the bootstrap samples.

Table 3: The 96 statistically significant associations clustered according to the tables (see Ap-
pendix). The computed strengths were normalised with the strongest strength playing the role of
the basis. The column ”boot” refers to the proportion of times the observed directed relationships
were discovered in the bootstrap samples.

from to strength boot from to strength boot from to strength boot
C5 Q1 0.0387 0.4700 L3.1 X1.1 0.0030 0.1600 X9.2 X9.3 0.0088 0.8600
C5 X2.1 0.0364 0.6300 L4.1 V1 0.2177 0.8000 X10.1 X10.2 0.1817 0.9850
C6 V11 0.0402 0.3350 L4.1 X6.3 0.0097 0.6550 X10.2 X10.3 0.2477 0.9950
C6 X7.1 0.0214 0.4750 X1.1 X1.3 0.2825 1.0000 X10.3 V7 0.0047 0.4800
C6 X7.3 0.0004 0.1100 X1.2 X10.3 0.0102 0.4900 Y1.1 L3.1 0.0193 0.8050
G1 G7 0.0131 0.9650 X1.2 X4.3 0.0141 0.6050 Y1.1 Y1.7 0.0631 0.3200
G1 G7 0.0131 0.9650 X1.3 Q2 0.0122 0.3400 Y1.3 V4 0.0684 0.6550
G1 V8 0.0034 0.5250 X2.1 X2.2 0.0018 0.7300 Y1.3 Y1.5 0.0628 0.5350
G3 C4 0.0031 0.4150 X2.1 X2.3 0.3126 1.0000 Y1.3 Z1 0.0082 0.7650
G3 G2 0.0060 0.3550 X2.2 X1.2 0.0015 0.5100 Y1.5 Z1 0.3913 0.3650
G4 G5 0.1626 0.9950 X3.1 X3.2 0.5271 0.9550 Y1.7 Z1 0.2116 0.8000
G5 G1 0.0433 0.4100 X3.1 X3.3 0.3566 0.9500 M1 V8 0.0021 0.2500
G5 G3 0.0999 1.0000 X4.1 X4.2 0.0253 0.9050 S1 A4 0.3914 1.0000
G7 C4 0.0050 0.9850 X4.1 X4.3 0.0018 0.7500 S1 C6 0.0654 0.1250
G7 S3 0.0073 0.8600 X4.2 V10 0.0045 0.3450 S1 S2 0.0318 0.3700
G7 X9.3 0.0007 0.5200 X4.2 X4.3 0.0028 0.8650 S2 S3 0.0329 0.3400
G8 G9 0.3444 0.8650 X5.1 X5.2 1.0000 0.9950 S2 V9 0.0275 0.6250
G9 G12 0.3791 1.0000 X6.1 X4.1 0.0003 0.1450 S3 V3 0.0206 0.3850
G10 G11 0.7616 0.9850 X6.1 X6.2 0.1488 1.0000 S3 Y1.1 0.0039 0.3200
G10 G8 0.0032 0.2450 X6.1 X6.3 0.0010 0.4500 V1 V7 0.0294 0.6000
G10 G9 0.3025 0.3600 X6.2 Q3 0.0249 0.4950 V5 S1 0.0689 0.0950
G11 G8 0.0300 0.8500 X6.2 X6.3 0.0272 0.9950 V5 S2 0.0157 0.4000
Q1 Q2 0.0036 0.7350 X6.3 V1 0.0040 0.2500 V5 V11 0.0307 0.4700
Q1 V5 0.0837 0.5700 X6.3 V5 0.0097 0.2500 V5 V2 0.0477 0.9750
Q1 V6 0.1149 0.8850 X7.1 X7.3 0.0294 1.0000 V5 X4.1 0.0086 0.5150
Q1 X5.3 0.0606 0.3300 X7.2 Q2 0.0041 0.4500 V6 Q2 0.0048 0.6750
Q3 Q2 0.0039 0.2400 X7.2 X7.3 0.0629 1.0000 V6 Q3 0.0364 0.6150

continued....
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from to strength boot from to strength boot from to strength boot
L1.1 L1.5 0.0109 0.7800 X8.1 X8.2 0.2505 1.0000 V6 V7 0.0217 0.6300
L1.1 M1 0.0008 0.5100 X8.2 X8.3 0.1101 0.9950 V7 V9 0.0075 0.2000
L1.2 L1.5 0.0083 0.5150 X8.3 V7 0.0065 0.5750 V9 C4 0.0058 0.7100
L1.5 L1.4 0.2302 0.8350 X9.1 X9.2 0.1209 1.0000 V10 M1 0.0533 0.5850
L3.1 L5 0.0882 0.7600 X9.1 X9.3 0.0117 0.9950 V10 V8 0.0323 0.3450

4.3.1 Evaluation of the synthetic sample generation in Thessalia

Using the estimated BN structure we generated a sample of 509 synthetic farms whose characteris-
tics match to a high a degree the characteristics of the observed farms. Application of the γ-OMP
[22] and FBED [23] attribute selection algorithms indicated that the two samples (observed and
synthetic farms) can be separated with accuracy 71%. These two algorithm were ordinarily iden-
tifying the irrigated are for green plants, pasture and grazing, the irrigation system, the annual
unpaid labour time worked and the houseehold size as the four attributes responsible for this level
of separation. When these attributes were removed, γ-OMP could not separate the farms (accuracy
= 51%). The mean of the irrigated area of that crop in the synthetic farms is less than the mean in
the observed farms, while for the irrigation system the synthetic farms contained a higher number of
farms without irrigation system than the the actual number observed. Secondly, the annual unpaid
labour time had smaller values in the synthetic sample and we generated households with smaller
sizes than the ones observed.

KDE test assessing the distributions of the synthetic values of the attributes produced satisfactory
results. The p-value for the distributions of 49 out of the 84 attributes11 (58.3%) was more than 0.05
indicating that these distributions, of the observed and and the synthetic farms, can be assumed
(statistically) equal. The energy test was more conservative and produced 43 out of the 84 p-values
(51.2%) greater than 0.05. When applied to the standardised data, the energy test of equality of
the joint distributions between the observed and the synthetic farms produced a p-value equal to
0.479 providing evidence of a very good fit.
Finally, Figure 17 shows the data projected onto the first 5 principal components produced by PCA.
It is evident that the synthetic farms cannot be distinguished from the observed farms.

4.4 A synthetic sample for Peloponnisos (NUTS-2 level)

Peloponnisos is located at the south of the continental Greece and contributed to the Greek FADN
sample with 697 farms. Due to sparsity (excessive amounts of zeros) in many attributes, aggregation
of attributes, based on their proximity, was deemed mandatory for the the BN learning and the
SPG task subsequently12 resulting in 85 attributes. Those 85 attributes, grouped according to
the clusters presented previously, can be found in the Appendix. Additionally, the same set of
constraints imposed on the BN learning for the case of the previous regions was also imposed
among the 85 attributes of Peloponnisos.

11Two attributes had excessive amounts of zeros and the KDE test was not applicable
12For instance, the 20 crops were merged into 8 crops.
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Figure 13: Distributions of the crop production (attributes TL-X1.3 - TL-X10.3). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 14: Distributions of the animal products (attributes TL-Y1.1, TL-Y1.3, TL-Y1.5, TL-Y1.7,
TL-Z1) and of the other farm income (TL-M1). The black line refers to the observed farms, while
the red line refers to the synthetic farms. The KDE test p-value appears on the top-right.
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Figure 15: Distributions of the closing valuation of the farm assets (attributes TL-A1 - TL-A4) and
of the subsidies and grants (TL-S1 - TL-S3). The black line refers to the observed farms, while the
red line refers to the synthetic farms. The KDE test p-value appears on the top-right.
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Figure 16: Distributions of the variable inputs cost (attributes TL-V1 - TL-V11). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 17: Thessalia: The data projected onto the first 5 principal components. The black circles
refer to the observed farms whereas the red circles refer to the synthetic farms.
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• Crop production. Table A.1 shows the crop production of central Macedonia, where some
crops have been aggregated due to sparsity (excessive amount of zeros), yielding 10 crops.

• Animal products. Table A.2 shows the condensed animal production, the weighted livestock,
values of sold and slaughtered animals, values of animals left rearing-breeding and the total
milk production.

• Farm income, subsidies and grants. Table A.3 contains information on the components
that formulate the attribute termed ”other farm income”, the aggregation of the following
characteristics: value of sold animals, value of sales of wool, eggs, honey and manure, other
income from livestock (e.g. contract rearing), income from land (e.g. leasing), food processing
(e.g. cow’s milk), contractual work and income from other sources (e.g. tourism, production of
renewable energy). Table B.9 shows the subsidies and grants grouped in 4 clusters, decoupled
payments, crops and animals, exceptional support and rural development and subsidies on
cost. Note that despite the subsidies on cost being listed in the FADN guide manual, this
attribute was not applicable in the Greek use case.

• Variable inputs cost. Table A.4 contains 11 attributes (2 attributes were merged) representing
the variable inputs cost.

Table 4 presents the strengths of the statistically significantly associated relationships discovered
via the MMHC BN learning algorithm. Evidently, the BN identified 119 directed relationships in
Peloponnisos presented in Table 4, along with their estimated strength, while Figure 18 shows the
BN structure. The results of bootstrap validation also appear in Table 4. Out of the 119 identified
directed relationships in the observed farms, 75 (63%) were observed more than 50% of the times
in the bootstrap samples.

Table 4: The 119 statistically significant associations clustered according to the tables (see Ap-
pendix). The computed strengths were normalised with the strongest strength playing the role of
the basis. The column ”boot” refers to the proportion of times the observed directed relationships
were discovered in the bootstrap samples.

from to strength boot from to strength boot from to strength boot
C4 X7.1 0.0025 0.2900 L2.1 V3 0.0009 0.5350 Y1.5 X4.1 0.0056 0.4700
C5 S3 0.0168 0.2850 L3.2 L3.1 0.0022 0.1850 Y1.5 Y1.7 0.1512 0.9900
C6 V11 0.0220 0.8200 L3.2 M1 0.0253 0.9300 Y2.1 V4 0.0339 0.9650
C6 X4.1 0.0147 0.5250 L3.2 V10 0.0141 0.5400 Y2.1 Y2.3 0.2765 0.9650
G1 G3 0.0037 0.8850 L3.2 Y2.1 0.0382 0.2200 Y2.1 Y2.5 0.0217 0.5300
G1 G4 0.0549 0.9100 L4.1 V1 0.4480 0.7800 Y2.1 Y2.7 0.0245 0.6700
G1 S1 0.0041 0.3200 L4.2 M1 0.0012 0.3300 Y2.1 Z1 0.0582 0.9300
G1 X6.3 0.0015 0.4550 L4.2 X4.1 0.0144 0.5350 Y2.3 Y2.5 0.0344 1.0000
G2 G3 0.0084 0.6150 L5 L3.1 0.0191 0.8900 Y2.3 Y2.7 0.0583 1.0000
G2 Y1.5 0.0003 0.3800 X1.1 X1.3 0.0447 1.0000 Y2.5 C6 0.0014 0.3950
G3 L4.2 0.0057 0.6100 X1.2 X1.3 0.1029 1.0000 Y2.5 V10 0.0383 0.3250
G4 G5 0.1655 1.0000 X2.1 X2.2 0.3736 1.0000 Y2.5 Z1 0.0071 0.5750
G4 G6 0.0500 0.7400 X2.2 Q2 0.0032 0.3300 Y2.7 C5 0.0143 0.4350
G4 V10 0.0009 0.2500 X2.2 X2.3 0.0531 0.9600 Z1 L3.1 0.0146 0.3700
G4 X5.1 0.0014 0.4750 X2.2 X4.2 0.0053 0.2300 Z1 V4 0.0173 0.7200

continued....
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from to strength boot from to strength boot from to strength boot
G5 G3 0.0605 0.9900 X2.3 V5 0.0074 0.7800 S1 A4 0.6501 0.9250
G7 V9 0.0038 0.3000 X2.3 V7 0.0121 0.6300 S2 S3 0.0437 0.6000
G7 X7.1 0.0027 0.7050 X3.1 X3.2 0.6123 1.0000 A4 C5 0.0553 0.4550
G8 G9 1.0000 1.0000 X3.1 X3.3 0.0616 1.0000 A4 S2 0.0481 0.4500
G8 X8.1 0.0008 0.6750 X3.2 X3.3 0.0369 1.0000 A4 V3 0.0188 0.3750
G9 G10 0.6974 1.0000 X4.2 X4.3 0.1652 1.0000 V1 V11 0.0162 0.4550
G9 X8.1 0.0007 0.5500 X4.3 Y1.5 0.0015 0.3750 V2 C4 0.0013 0.1900
G10 G11 0.1915 1.0000 X5.1 X5.2 0.2089 1.0000 V2 L5 0.0019 0.3300
G11 G12 0.3326 1.0000 X5.1 X5.3 0.0018 0.7600 V2 V10 0.0087 0.3100
G12 G2 0.0007 0.3600 X5.2 X5.3 0.0335 0.9950 V3 L3.1 0.0143 0.5450
G12 V5 0.0153 0.6450 X5.3 V7 0.0030 0.5000 V4 C6 0.0027 0.2950
Q1 V6 0.0722 0.4450 X6.1 X6.2 0.9965 1.0000 V5 X1.1 0.0047 0.3450
Q2 Q1 0.0830 0.2550 X6.1 X6.3 0.0002 0.5750 V6 L4.1 0.0369 0.2550
Q3 Q2 0.1040 0.5000 X6.2 X6.3 0.0004 0.5900 V6 V11 0.0094 0.4350
Q3 V3 0.0022 0.3800 X6.3 V5 0.0028 0.0450 V6 V7 0.0739 0.7350
Q3 V6 0.0828 0.4750 X7.1 X7.2 0.0530 1.0000 V6 V9 0.1085 0.5050
L1.1 L1.5 0.0130 0.5500 X7.1 X7.3 0.0173 1.0000 V7 V3 0.0217 0.6450
L1.2 L1.3 0.0057 0.9600 X7.2 X7.3 0.0281 1.0000 V8 C4 0.0046 0.5250
L1.2 L1.5 0.0072 0.9450 X8.1 X8.3 0.1373 1.0000 V9 L4.1 0.0238 0.1850
L1.2 V2 0.0017 0.6100 X8.2 X8.3 0.0419 0.9800 V9 V11 0.0055 0.3350
L1.3 C4 0.0076 0.7150 X8.3 V7 0.0246 0.5350 V9 V3 0.0103 0.3800
L1.3 L1.6 0.0134 1.0000 Y1.1 Y1.3 0.0122 0.4800 V9 X7.2 0.0041 0.2850
L1.3 M1 0.0012 0.3800 Y1.3 X4.1 0.0021 0.1100 V10 M1 0.2139 0.3900
L1.3 X7.1 0.0010 0.6350 Y1.3 Y1.5 0.2341 1.0000 V11 V5 0.0262 0.5650
L1.5 L1.4 0.3613 0.9150 Y1.3 Y1.7 0.2420 0.9950

4.4.1 Evaluation of the synthetic sample generation in Peloponnisos

Using the estimated BN structure and those 85 attributes we generated a sample of 697 synthetic
farms whose characteristics match to a relatively low degree the characteristics of the observed
farms. Application of the γ-OMP [22] and FBED [23] attribute selection algorithms indicated that
the two samples (observed and synthetic farms) can be separated with accuracy 78.3%. These two
algorithm were ordinarily identifying seven attributes responsible for this level of separation. When
these attributes were removed, γ-OMP could not separate the farms adequately (accuracy = 55%).

The KDE test assessing the distributions of the synthetic values of the attributes produced satis-
factory results. The p-value for the distributions of 44 out of the 83 attributes13 (53.4%) was more
than 0.05 indicating that these distributions, of the observed and and the synthetic farms, can be
assumed (statistically) equal. The energy test was more conservative and produced 30 out of the
83 p-values (36.1%) greater than 0.05. The energy test applied to the, independently, standardised
observed and synthetic farms produced a low p-value equal to 0.002.
Finally, Figure 23 shows the data projected onto the first 5 principal components produced by PCA.
It is evident that the synthetic farms cannot be distinguished from the observed farms.

13Two attributes had excessive amounts of zeros and the KDE test was not applicable
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Figure 19: Distributions of the crop production (attributes PL-X1.3 - PL-X8.3). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 20: Distributions of the animal products (attributes PL-Y1.1, PL-Y1.3, PL-Y1.5, PL-Y1.7,
PL-Z1) and of the other farm income (PL-M1). The black line refers to the observed farms, while
the red line refers to the synthetic farms. The KDE test p-value appears on the top-right.
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Figure 21: Distributions of the closing valuation of the farm assets (attributes PL-A1 - PL-A4) and
of the subsidies and grants (PL-S1 - PL-S3). The black line refers to the observed farms, while the
red line refers to the synthetic farms. The KDE test p-value appears on the top-right.
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Figure 22: Distributions of the variable inputs cost (attributes PL-V1 - PL-V11). The black line
refers to the observed farms, while the red line refers to the synthetic farms. The KDE test p-value
appears on the top-right.
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Figure 23: Peloponnisos: The data projected onto the first 5 principal components. The black
circles refer to the observed farms whereas the red circles refer to the synthetic farms.
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5 Conclusions

This deliverable presented the Data Fusion Module (DFM) of the AGRICORE suite. The DFM is
responsible for accessing the Data Warehouse to access the individual datasets previously extracted
and transformed by the DEM, as well as their metadata (statistical characterisation and forbidden
relationships) also obtained through the DEM. Once the necessary data is loaded, the DFM executes
a series of procedures to generate enriched datasets by integrating the individual datasets. These
enriched datasets are used for various processes in AGRICORE. The most important of these is the
construction of anonymised agents that form the synthetic population that is subsequently simu-
lated by the ABM engine. This construction requires generating, for each agent, pseudo-random
values and assigning them to each of its attributes. Given that the variables associated with certain
attributes show correlation with the variables of other attributes, the assignment of a value for one
attribute conditions the range of values assignable to other attributes. Therefore, it is necessary to
have a mathematical object to determine the order in which attributes are generated, as well as the
joint probability densities of these attributes.

The mathematical artefact chosen for AGRICORE is the Bayesian Network. This deliverable de-
scribes the Max-Min Hill Climbing (MMHC) algorithm and the variants incorporated into it to
adapt it to the particular needs of the project.

In order to test the performance of the BNs built using the MMHC, 4 example cases have been
implemented at regional (NUTS2) and sub-regional (NUTS3) level belonging to the Greek use case
of the AGRICORE Project. Specifically, based on the regionalised subsamples of the Greek FADN,
equivalent synthetic subsamples were constructed and their goodness-of-fit was analysed.

The results show that the fit is very accurate in all four cases, making the proposed procedure very
promising for application in the Synthetic Population Generator (SPG). The next steps are the
integration and packaging of the BN construction scripts for its execution from the SPG, and the
testing of the generation of complete synthetic populations for the 3 use cases contemplated in the
project.
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Appendix A Specific aggregations of variables for each case study

A.1 Aggregation of attributes-linked variables for Central Macedonia (NUTS-2
level)

For the variables within Farm Labor, Subsidies and Farm Assets categories we use the national
aggregation scheme.

Table A.1: Aggregation of Crop Production for Central Macedonia case example

Code Crop National Coding
CM-X1 Common Wheat X1
CM-X2 Durum Wheat X2
CM-X3 Maize X3
CM-X4 Other Cereals X4
CM-X5 Rice X5
CM-X6 Dry pulses and Protein Crops X6
CM-X7 Cotton X9
CM-X8 Oil Seeds X10
CM-X9 Tobacco, Other Industrial, Flowers and Miscellaneous Crops X7-X8 & X11
CM-X10 Vegetables X12-X13
CM-X11 Green Plants, Pasture and Grazing X14
CM-X12 Fruits, Berries and Nuts X15
CM-X13 Olive Trees X17
CM-X14 Grapes and Wine X18-X20

Crop data include Xi.1: cultivated area; Xi.2: irrigated area; Xi.3: crop production; Xi.4: quantity sold;

Xi.5: value of sales, where i=1,...,14. Citrus fruit production is negligible in the region and therefore it was

excluded.

Table A.2: Aggregation of Animal Products variables for Central Macedonia case
example

Code Product National Coding
CM-Y1 All types of meat Y2-Y4
CM-Z1 All types of milk Z1-Z3

Meat production: Yi.1: Weighted average of livestock; Yi.3: Value of sold animals; Yi.5:
Value of slaughtered animals; Yi.7 Value of animals for breeding. Milk production: Z1: Total
production.
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Table A.3: Aggregation of Other Farm Income variables for Central Macedonia
case example

Code Product National Coding
CM-M1 Other Farm Income Y1, Y5, Z4-Z7, M1-M5

Data include Yi.3: Value of sold animals; Zi.3: Value of sales.

Table A.4: Aggregation of Variable Inputs Cost variables for Central Macedonia
case example

Code Attribute National Coding
CM-V1 Wages on Hired Labour V1
CM-V2 Contract Labour V2
CM-V3 Machinery V3
CM-V4 Livestock Cost V4-V5
CM-V5 Seeds V6
CM-V6 Fertilisers and Manure V7
CM-V7 Protection V8
CM-V8 Irrigation Water V9
CM-V9 Energy V10
CM-V10 Other Farm Cost V11
CM-V11 Farm Overheads V12
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A.2 Aggregation of attributes-linked variables for Thessaloniki (NUTS-3 level)

Table A.1: Aggregation of Crop Production variables in the Thessaloniki case example

Code Crop National Coding
TH-X1 Common Wheat X1
TH-X2 Durum Wheat X2
TH-X3 Maize X3
TH-X4 Other Cereals X4
TH-X5 Rice X5
TH-X6 Dry pulses and Protein Crops X6
TH-X7 Cotton X9
TH-X8 Oil Seeds X10
TH-X9 Tobacco, Other Industrial, Flowers and Miscellaneous Crops X7-X8 & X11
TH-X10 Vegetables X12-X13
TH-X11 Green Plants, Pasture and Grazing X14
TH-X12 Olive Trees, Fruits, Berries and Nuts X15 & X17
TH-X13 Grapes and Wine1 X18-X20

Crop data include Xi.1: cultivated area; Xi.2: irrigated area; Xi.3: crop production; Xi.4: quantity sold;

Xi.5: value of sales, where i=1,...,13. Citrus fruit production is negligible in the region and therefore it was

excluded.
1 Only information on Xi.1, Xi.2 and Xi.5.
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A.3 Aggregation of attributes-linked variables for Thessalia (NUTS-2 level)

Table A.1: Aggregation of Crop Production variables for the Thessalia case example

Code Crop National Coding
TL-X1 Other Cereals X1 & X4
TL-X2 Durum Wheat X2
TL-X3 Maize X3
TL-X4 Potatoes, Protein Crops and Rice X5-X7
TL-X5 Cotton X9
TL-X6 Tobacco, Oil Seeds, Industrial Crops and Vegetables X8 & X10-X13
TL-X7 Green Plants, Pasture and Grazing X14
TL-X8 Fruits, Berries and Nuts X15-X16
TL-X9 Olive Trees X17
TL-X10 Grapes and Wine1 X18-X20

Crop data include Xi.1: cultivated area; Xi.2: irrigated area; Xi.3: crop production; Xi.4: quantity

sold; Xi.5: value of sales, where i=1,...,10. Citrus fruit production is negligible in the region and

therefore it was excluded.
1 Only information on Xi.1, Xi.2 and Xi.5.

Table A.2: Aggregation of Animal Products variables for Thessalia case example

Code Product National Coding
TL-Y1 All types of meat Y2-Y4
TL-Z1 All types of milk Z1-Z3

Meat production: Yi.1: Weighted average of livestock; Yi.3: Value of sold animals; Yi.5:
Value of slaughtered animals; Yi.7 Value of animals for breeding. Milk production: Z1: Total
production.

Table A.3: Aggregation for Other Farm Income variables for Thessalia case ex-
ample

Code Product National Coding
TL-M1 Other Farm Income Y1, Y5, Z4-Z7, M1-M5

Data include Yi.3: Value of sold animals; Zi.3: Value of sales.
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Table A.4: Aggregation of Variable Inputs Cost variables for Thessalia case ex-
ample

Code Attribute National Coding
TL-V1 Wages on Hired Labour V1
TL-V2 Contract Labour V2
TL-V3 Machinery V3
TL-V4 Livestock Cost V4-V5
TL-V5 Seeds V6
TL-V6 Fertilisers and Manure V7
TL-V7 Protection V8
TL-V8 Irrigation Water V9
TL-V9 Energy V10
TL-V10 Other Farm Cost V11
TL-V11 Farm Overheads V12
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A.4 Aggregation of attributes-linked variables for Peloponnisos (NUTS-2 level)

Table A.1: Aggregation of Crop Production variables for the Peloponnisos case example

Code Crop National Coding
PL-X1 Cereals X1 - X4
PL-X2 Potatoes, Protein Crops, Tobacco, Oil Seeds and Industrial Crops X6-X11
PL-X3 Vegetables X3
PL-X4 Green Plants, Pasture and Grazing X14
PL-X5 Fruits, Berries and Nuts X15
PL-X6 Citrus Fruits X16
PL-X7 Olive Trees X17
PL-X8 Grapes and Wine1 X18-X20

Crop data include Xi.1: cultivated area; Xi.2: irrigated area; Xi.3: crop production; Xi.4: quantity sold; Xi.5:

value of sales, where i=1,...,8. Citrus fruit production is negligible in the region and therefore it was excluded.
1 Only information on Xi.1, Xi.2 and Xi.5.

Table A.2: Aggregation of Animal Products variables for the Peloponnisos case
example

Code Product National Coding
PL-Y1 All types of meat Y2-Y4
PL-Z1 All types of milk Z1-Z3

Meat production: Yi.1: Weighted average of livestock; Yi.3: Value of sold animals; Yi.5:
Value of slaughtered animals; Yi.7 Value of animals for breeding. Milk production: Z1: Total
production.

Table A.3: Aggregation of Other Farm Income variables for Peloponnisos case
example

Code Product National Coding
PL-M1 Other Farm Income Y1, Y5, Z4-Z7, M1-M5

Data include Yi.3: Value of sold animals; Zi.3: Value of sales.
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Table A.4: Aggregation of Variable Inputs Cost variables for Peloponnisos case
example

Code Attribute National Coding
PL-V1 Wages on Hired Labour V1
PL-V2 Contract Labour V2
PL-V3 Machinery V3
PL-V4 Livestock Cost V4-V5
PL-V5 Seeds V6
PL-V6 Fertilisers and Manure V7
PL-V7 Protection V8
PL-V8 Irrigation Water V9
PL-V9 Energy V10
PL-V10 Other Farm Cost V11
PL-V11 Farm Overheads V12
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Appendix B Greek FADN variables common for all case examples

Table B.1: Structural Characteristics

Attribute FADN Coding and Definitions Code
Latitude 20 Latitude in degrees C1
Longitude 30 Longitude in degrees C2
Size Class 90 Economic size class C3
Irrigation system 210 Main irrigation system used on the farm C4
Owned UAA 10 farm is the owner, lifelong tenant or leaseholder C5
Rented UAA 20 Land not owned by the holder for which a fixed rent is paid C6
Sharecropped UAA 30 Land farmed jointly by the grantor C7

Table B.2: Soil, Spatial and Climatic Data

Attribute Information Code
Human Influence Index Values 0 - 51.6. Zero value represents no human influence

G1

(Direct human influence and 64 represents maximum human influence possible,
on ecosystems) using all 8 measurements of human presence:

Population Density/km2, Score of Railroads, Score of
Major Roads, Score of Navigable, Rivers, Score of
Coastlines, Score of Nighttime Stable Lights Values,
Urban Polygons, Land Cover Categories.

Soil pH (CaCl2) Values 0 - 7.5 G2
Topsoil organic carbon content (SOC) content (%) in the surface horizon of soils

G3
Values 0-10.1

Altitude in meters. Values 0 - 1723. G4
Slope Values 0% - 70.2%. 100% is horizontal line. G5
Coast distance in meters. Values 0 - 135758. G6
Erosion % of land downgraded. Values 0 - 50.8 G7
Average Annual Temperature in oC. Values 13.3 - 21.3 G8
Maximum Annual Temperature in oC. Values 33.9 - 39.4 G9
Minimum Annual Temperature in oC. Values -8.7 - 6.8 G10
Humidity in %. Values 55.4 - 73.6 G11
Total Rainfall in mm. Values 86.8 - 926.3 G12
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Table B.3: Soil and Water Contamination

Attribute FADN Coding and Definitions Code
Nitrogen 3031 Quintals of N used in mineral fertilisers Q1
Phosphorous Pentoxide 3032 Quintals of P2O5 used in mineral fertilisers Q2
Potassium Oxide 3033 Quintals of K2O used in mineral fertilisers Q3

Table B.4: Farm Labour

Attribute FADN Coding and Definitions Code
Manager G Gender L1.1
Characteristics1 B Age L1.2

T Training L1.3
Y1 Hours worked annually L1.4
W1 Number of Annual Work Units (AWU) L1.5
W2 Share of work for OGA directly related to the holding L1.6

Holder Characteristics Y1 Hours worked annually L2.1
W1 Number of Annual Work Units (AWU) L2.2

Unpaid Labour 40 Y1 Annual time worked
L3.150 Y1 Annual time worked

60 Y1 Annual time worked
40 Y2 % of annual time worked

L3.250 Y2 % of annual time worked
60 Y2 % of annual time worked

Paid Labour 50 Y1 Annual time worked
L4.160 Y1 Annual time worked

70 Y1 Annual time worked
50 Y2 % of annual time worked

L4.260 Y2 % of annual time worked
70 Y2 % of annual time worked1

Household Size 40 Spouse of holder
L5

50 Other unpaid
1 When manager is paid labourer, we report W2 not Y2.
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Table B.5: Crop Production

Variable FADN Coding and Definitions Code
Common Wheat 10110 Common wheat and spelt X1.1-X1.5
Durum Wheat 10120 Durum wheat X2.1-X2.5
Maize 10160 Grain maize X3.1-X3.5
Other Cereals 10130 Rye

X4.1-X4.510140 Barley
10150 Oats
10190 Other cereals for grain production

Rice 10170 Rice X5.1-X5.5
Dry pulses and 10210 Peas, field beans and sweet lupines

X6.1-X6.5Protein Crops 10220 Lentils, chickpeas and vetches
10290 Other protein crops

Potatoes and 10300 Potatoes
X7.1-X7.5Root Crops 10310 Potatoes for starch

10390 Other potatoes
10400 Sugar beet
10500 Other fodder roots and brassicats

Tobacco 10601 Tobacco X8.1-X8.5
Cotton 10603 Cotton X9.1-X9.5
Oil Seeds 10605 Sunflower

X10.1-X10.5
10604 Rape and turnip rape
10606 Soya
10607 Linseed1

10608 Other oil seed crops
Other Industrial and 10609 Flax1

X11.1-X11.5

Miscellaneous Crops 10610 Hemp
10611 Other fiber plants1

10602 Hops1

10612 Aromatic, medical & cullinary
10690 Other industrial crops
10613 Sugar cane1

10810 Open field flower and ornamental plants
10820 Greenhouse flower and ornamental plants
40500 Nurseries
40600 Other permanent crops
60000 Mushrooms1

40610 Christmas trees1

40700 Permanent crops under glass1

Vegetables (open field) 10711 Fresh vegetables, melons and strawberries
X12.1-X12.510712 Market gardening

Vegetables (greenhouses) 10720 Fresh vegetables, melons and strawberries X13.1-X13.5
Green Plants, Pasture 10910 Temporary grass

X14.1-X14.5and Grazing 10921 Green maize
10922 Leguminous plants
10923 Other green plants
11000 Seed and seeding
11100 Other arable land crops
11210 Fallow land without subsidies X14.1-X14.2, X14.5
30100 Pasture and meadow X14.1-X14.3, X14.5
30200 Rough grazing X14.1-X14.3, X14.5

Fruits, berries and nuts 40111 Apples

X15.1-X15.5

continued....
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Variable FADN Coding and Definitions Code
40112 Pears
40113 Peaches and nectarines
40114 Other fruit of temperate zones
40115 Subtropical or tropical fruits
40120 Berry species
40130 Nuts

Citrus Fruits 40210 Oranges

X16.1-X16.540220 Tangerines, mandarins & clementines
40230 Lemons
40290 Other citrus fruit

Olive Trees 40310 Table olives
X17.1-X17.540320 Olives for oil production

40330 Olive-oil
40340 Olive by-products X17.3-X17.5

Grapes for wine 40451 Grapes for wine PDO
X18.1-X18.540452 Grapes for wine PGI

40460 Grapes for other wine
40470 Miscellaneous products of vines X18.3-X18.5
40480 Vine by-products X18.3-X18.5

Table grapes and raisins 40430 Table grapes
X19.1-X19.540440 Raisins

Wines 40411 Wine PDO
X20.1-X20.540412 Wine PGI

40420 Other wines
Xi.1: cultivated area; Xi.2: irrigated area; Xi.3: crop production; Xi.4: quantity sold; Xi.5: value of sales
1 Non applicable in the Greek FADN dataset.
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Table B.6: Livestock Production

Variable FADN Coding and Definitions Code
Equidae 100 Equidae Y1.1-Y1.3, Y1.6-Y1.7
Bovine 210 Bovine animals <1 yr old male-female

Y2.1-Y2.7

220 Bovine animals 1-2 yr old male
230 Bovine animals 1-2 yr old female
240 Male bovine animals >2 yr old
269 Other cows
261 Dairy cows
252 Heifers for fattening Y2.1-Y2.5
262 Buffalo cows Y2.1-Y2.5
251 Breeding heifers Y2.1-Y2.3, Y2.6-Y2.7

Sheep and Goats 311 Ewes, breeding females

Y3.1-Y3.7
319 Other sheep
321 Goats, breeding females
329 Other goats

Pigs, Poultry etc 410 Piglets having weight <20 Kgs

Y4.1-Y4.7
420 Breeding sows having weight >50 Kgs
491 Pigs for fattening
499 Other pigs
510 Poultry-boilers
520 Laying hens

Y4.1-Y4.5
530 Other poultry
610 Rabbits, breeding females Y4.1
699 Other rabbits Y4.1-Y4.5

Bees 700 Bees Y5.1-Y5.3

Yi.1: No of animals; Yi.2: No of animals sold; Yi.3: Value of sold animals; Yi4: No of animals for
slaughtering; Yi.5: Value of slaughtered animals; Yi.6: No of animals for rearing-breeding; Yi.7: Value of
animals for rearing-breeding.

Table B.7: Animal Products

Variable FADN Coding and Definitions Code
Cow milk 261 Cows’ milk

Z1.1-Z1.3
262 Buffalo’s cows’ milk

Sheep milk 311 Sheep milk Z2.1-Z2.3
Goat milk 321 Goat’s milk Z3.1-Z3.3
Wool 330 Wool Z4.1-Z4.3
Eggs 531 Eggs for consumption

Z5.1-Z5.3
532 Eggs for hatching

Honey 700 Honey and products of bee-keeping Z6.1-Z6.3
Manure 800 Manure Z7.3

Zi.1: total production; Zi.2: production sold; Zi.3: value of sales.
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Table B.8: Values of Sales of Other Farm Income Sources

Variable FADN Coding and Definitions Code
Income from Land 11210 Fallow land without subsidies

M1

11300 Leased land
90100 Receipts from renting out land
90200 Compensation by crop insurance
90300 By-products other than olive and vine
90310 Straw
90320 Sugar beet tops1

90330 Other by-products
90900 Other

Income from Livestock 1100 Contract rearing1

M2

1120 Cattle under contract1

1130 Sheep and goats under contract1

1140 Pigs under contract1

1150 Poultry under contract1

1190 Other animals under contract1

1200 Other animal services
Food Processing 261 Processing of cow’s milk

M3

262 Processing of buffalo’s milk1

311 Processing of sheep’s milk
321 Processing of goat’s milk
900 Processing of meat or other animal products1

1010 Processing of crop
1020 Forestry and wood processing

Contractual work 2010 Contract work for others M4
Other Income Sources 2020 Tourism, accommodation, catering etc.

M52030 Production of renewable energy
9000 Other gainful activities related to farm

1 Non applicable in the Greek FADN dataset.
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Table B.9: Subsidies and Grants

Variable FADN Coding and Definitions Code
Decoupled Payments 1150 Basic payment scheme

S1

1200 Single area payment scheme1

1300 Redistributive payment1

1400 Practices beneficial for environment
1500 Payment for areas with natural constraints1

1600 Payment for young farms
1700 Small farms scheme

Coupled Support on:
Crops 23111 Cereals

S2

23112 Oilseeds1

23113 Protein crops
2312 Potatoes1

23121 Starch potatoes1

2313 Sugar beet
Industrial Crops 23141 Flax1

23142 Hemp1

23143 Hops1

23144 Sugar cane1

23145 Chicory1

23149 Other industrial crops
2315 Vegetables
2316 Fallow land1

2317 Rice
2318 Grain legumes
2319 Arable crops not defined1

2320 Permanent grassland1

2321 Dried fodder
2322 Crop specific payment for cotton
2323 National program for cotton1

2324 Seed production
Permanent Crops 23311 Berries1

23312 Nuts
2332 Pome and stone fruit
2333 Citrus plantations
2334 Olive plantations1

2335 Vineyards
2339 Other permanent crops1

Animals 2341 Dairy1

2342 Beef and veal
2343 Cattle (type not specified)1

2344 Sheep and goat
2345 Pigs and poultry1

2346 Silkworms
2349 Other animals1

2410 Short rotation coppices1

2490 Other coupled payments
Exceptional Support 2810 Disaster payments1

S3

and Rural Development 2890 Other grants and subsidies
2900 Other direct payments

continued....
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Variable FADN Coding and Definitions Code
3100 Agriculture
3300 Agri-environment-climate and animal welfare
3350 Organic farming
3400 Natura 2000 and WFD1

3500 Areas facing natural constraints
3610 Viability of forests
3620 Forest conservation1

3750 Restoration of agricultural products1

3900 Other
Subsidies on Cost1 4100 Wages and social security

S4

4200 Motor fuels
4310 Livestock
4320 Feed and grazing livestock
4330 Other livestock costs
4410 Seeds
4420 Fertilisers
4430 Crop protection

1 Non applicable in the Greek FADN dataset.

Table B.10: Closing Valuation of Farm Assets

Variable FADN Coding and Definitions Code
Current Asset 1010 Cash and equivalents

A1
1020 Receivables
1030 Other current assets
1040 Inventories
2010 Biological assets - plants

Land 3010 Agricultural land
A23020 Land improvements

5010 Forest land
Buildings and Machinery 3030 Farm buildings

A3
4010 Machinery and equipment

Non-current Assets 7010 Intangible assets, tradable
A47020 Intangible assets, non-tradable

8010 Other non-current assets1

1 Non applicable in the Greek FADN dataset.
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Table B.11: Variable Inputs Cost

Variable FADN Coding and Definitions Code
Wages on Hired Labour 1010 Wages and social security costs for paid labour V1
Contract Labor 1020 Contract work and machinery hire V2
Machinery 1030 Current upkeep of machinery and equipment

V31040 Motor fuels and lubricants
1050 Car expenses

Feedstuff 2010 Feedstuffs for grazing stock

V4

2020 Purchased coarse fodder for grazing stock
2030 Purchased feedstuffs for pigs
2040 Purchased feedstuffs for small animals
2050 Purchased feedstuffs for for grazing stock
2060 Farm-produced feedstuffs for pigs
2070 Farm-produced feedstuffs for small animals

Livestock Cost 2080 Veterinary expenses
V5

2090 Other specific livestock costs
Seeds 3010 Seeds and seedlings purchased

V6
3020 Seeds and seedlings produced

and used on the farm
Fertilizers and Manure 3030 Fertilisers and soil improvers

V7
3034 Purchased manure

Protection 3040 Crop protection products V8
Irrigation Water 5040 Irrigation water cost V9
Energy 5020 Electricity

V10
5030 Heating fuels

Other Farm Cost 3090 Other specific crop costs

V11

4010 Costs for forestry and wood processing
4020 Costs for crop processing
4030 Costs for cow’s milk processing
4040 Costs for buffalo’s milk processing1

4050 Costs for sheep’s milk processing
4060 Costs for goat’s milk processing
4070 Costs for animal meat processing
4090 Costs for other gainful activities

Farm Overheads 5010 Current upkeep of land and buildings

V12

5051 Agricultural insurance
5055 Other farm insurance
5061 Taxes and other dues
5062 Taxes on land and buildings
5070 Rent paid, total
5080 Interest and financial charges paid
5090 Other farming overheads

1 Non applicable in the Greek FADN dataset.
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